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Abstract 

Background  Freshwater snails are the first obligatory intermediate hosts in the trematode life cycle. Several parasitic 
diseases transmitted by these snails are endemic in Africa, and their distribution closely follows that of the interme-
diate hosts. These diseases represent a major public health problem and cause significant socio-economic losses 
in Africa, particularly schistosomiasis and fascioliasis. In this review, we will describe the main roles of freshwater snails 
in the life cycle of trematode parasites, and the geographical distribution of these diseases in Africa. We will also dis-
cuss the different techniques for detecting parasitic infections in snails, as well as the various methods of controlling 
snails and the larval stages of parasites.

Methods  We carried out a literature search for articles dealing with parasitic diseases transmitted by freshwater 
snail hosts in Africa. The search was conducted in databases such as PubMed, Web of Science and Google Scholar 
using various search terms combined by Boolean operators. Our search was limited to peer-reviewed articles 
less than 10 years old. Articles published to date in the fields of control of parasitic diseases transmitted by freshwater 
snails were included. Results were presented in narrative and in table format.

Results  The results of the database search identified 1007 records. We included 84 studies in this review. These stud-
ies generally focused on freshwater snails and the diseases they transmit. We described the geographical distribution 
of 43 freshwater species belonging to nine snail families, as well as the parasites that infect them. Several methods 
for diagnosing parasites in their snail hosts have been described, including microscopic and molecular methods, 
as well as antibody and protein barcode-based techniques. Molluscicides have been described as the main strategy 
for snail control.

Conclusion  This study highlights several elements of knowledge about diseases transmitted by freshwater snails 
and their distribution. A good understanding of snail infection detection techniques and existing control methods 
is an essential component in adapting control strategies for these diseases.
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Introduction
Freshwater snail-borne parasitic diseases (FSBPDs) rep-
resent a major public health problem worldwide, particu-
larly those caused by trematodes such as schistosomiasis 
and fascioliasis [1]. Both these trematodiasis are con-
sidered as neglected tropical diseases (NTDs) by the 
World Health Organization (WHO) [1]. These FSBPDs 
pose a risk to human health, affecting millions of people 
and causing major socio-economic losses, particularly 
in poor African populations. Freshwater snails serve as 
obligatory intermediate hosts in the lifecycle of parasites 
and play a major role in the epidemiology of trematodia-
sis, notably schistosomiasis and fascioliasis.

Schistosomiasis is the second most important endemic 
parasitic disease after malaria, in terms of its impact on 
public health. It affects more than 250 million people 
worldwide, including children and young people, and is 
responsible for almost 200,000 deaths a year [1].

The disease is most prevalent in low-income countries, 
particularly in sub-Saharan Africa (SSA) [1, 2]. In these 
regions, prevalence is particularly linked to irrigation sys-
tems, agricultural activities [3] and poor socio-environ-
mental conditions, including lack of drinking water. All 
these factors allow permanent contact between humans 
and snails, contributing to maintain transmission [4]. 
The disease involves various trematodes of the genus 
Schistosoma [5], with snails of the genera Biomphalaria 

and Bulinus serving as intermediate hosts for their lar-
val development. The most widely known are Schisto-
soma haematobium, S. mansoni, S. intercalatum and S. 
guineensis [6, 7].

Fascioliasis is a liver disease of domestic livestock 
caused by infestation with flukes of the Fasciola genus 
[8]. It is a worldwide zoonotic infection common to 
ruminants and present in more than 70 countries, par-
ticularly where sheep or cattle are reared [9]. It is widely 
distributed in tropical and sub-tropical areas of Africa 
and Asia, where it has a major impact on the productiv-
ity of domestic ruminants [10, 11]. Fascioliasis is a near-
cosmopolitan zoonosis, with sporadic cases in humans 
occurring in most parts of the world. Human fasciolia-
sis is currently classified among food/plant trematode 
zoonoses as an NTD [9]. Human fascioliasis also causes 
significant illness and morbidity, mainly in low-income 
farming communities. It is estimated that more than 
two million people worldwide are infected [12]. Fas-
ciola gigantica and F. hepatica are the main trematodes 
and can infect a wide variety of domestic animals, wild 
animals and humans [11]. Several snail species found in 
Africa, notably Lymnaea natalensis and L. trunctula, play 
an essential role in the transmission of trematode infec-
tions such as fascioliasis [13, 14].

This is followed by the transmission of parasitic dis-
eases, which is highly dependent on the expansion of 
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intermediate hosts and the rural development of water 
resources. The study of freshwater snail vectors provides 
vital information on the active transmission foci of para-
sitic infections. However, few studies have focused on 
the crucial role of freshwater snails in the transmission 
of parasites. Hence our review of FSBPDs in Africa, will 
focus on two major diseases (schistosomiasis and fascio-
liasis). We will focus on the geographical distribution of 
these parasitic diseases and their intermediate hosts, the 
detection of parasites, and the control of snail vectors.

Materials and methods
Search strategies and inclusion criteria
A comprehensive literature search of articles published 
on the infection of snail intermediate hosts that trans-
mit the trematode parasite in Africa was conducted. 
The search was conducted using the PubMed, Web of 
Science and Google Scholar databases from their crea-
tion until 24 February 2022 (Fig. 1). The following search 
terms were used: “(Snails AND Africa) OR (Snails AND 
diseases)”. The search terms were combined using the 
Boolean operator “AND/OR”. Our search was limited to 

peer-reviewed articles published in any language and less 
than 10 years old. No manual search was done. Relevant 
articles were also identified from the reference lists of 
previously identified articles. Zotero v.5 software (www.​
zotero.​org) was used to identify duplicates. We selected 
articles by analysing their titles and/or abstracts. Only 
articles that provided (a) data on freshwater snail inter-
mediate hosts of trematodes in different African coun-
tries, (b) information on the diagnostic methods used to 
detect infected snails, and (c) control strategies against 
snail intermediate hosts were included. Studies with-
out a full text, review articles and meta-analyses were 
excluded.

Results and discussion
The results of the search using the Google Scholar, Pub-
Med and Web of Science electronic databases yielded 
993 records, and an additional 14 studies were identified 
and added. After removing duplicates, we examined 704 
study titles and/or abstracts and excluded 568 that were 
not related to the present study and considered irrel-
evant. Ultimately, 136 full articles were extracted and 

Fig. 1   Flow diagram for the literature review

http://www.zotero.org
http://www.zotero.org
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assessed for eligibility, and 84 were selected for quali-
tative analysis and included in this review. The article 
selection process is presented in Fig. 1. Details of the 84 
studies are given below.

Role of freshwater snails in the parasite cycle
FBSPDs are mainly due to trematodes. These snails play 
an important role as intermediate hosts for several spe-
cies of trematodes, the best known of which belong to the 
Schistosomatoidea and Fascioloidea families [6, 12].

These diseases can be divided into groups according 
to the role of the snail host and the stage of develop-
ment of the corresponding parasite. The cycle often 
involves one or two intermediate hosts (IH), or snails 
are in most cases the first IH. We have classified the 
diseases into two trematode-related groups. The first is 
group 1, which corresponds to a direct cycle in which 
snails are the only intermediate hosts and are infected 
by miracidia, released by the definitive host (DH) and 
contaminating the water. This is the case with schisto-
somes. These miracidia penetrate snails, where asex-
ual reproduction takes place (mother sporocyst and 

daughter sporocyst stages) leading to the release of 
thousands of furcocercariae, which swim through the 
water to infect the definitive host by transcutaneous 
penetration [15] (Fig. 2A).

This is the case with liver flukes (Fasciola spp), the life-
cycle of which is characterised by infection of the IH by 
penetrating miracidium after eggs released by the mam-
malian DH hatch in the water. The miracidium mul-
tiply in the snail into redia and then into cercariae and 
emerge in the form of mature aquatic larvae (mature cer-
cariae) which will encyst into metacercariae on aquatic 
plants, which are then ingested by humans or animals 
(bovids) (Fig.  2B). In humans, the maturation of meta-
cercariae into adult flukes generally takes around three 
to 4  months. The development of F. gigantica may take 
slightly longer than that of F. hepatica [9].

These organisms are divided on the basis of their final 
habitats in humans: (1) hermaphroditic liver flukes (Fas-
ciola spp.), which reside in the bile canal [16] and infect 
humans when they ingest aquatic plants (e.g. watercress), 
and (2) bisexual blood flukes (Schistosoma spp.), which 
live in the intestinal or bladder veins (urinary bladder) 

Fig. 2  Illustration of the lifecycles of two genera of snail-borne parasites [credit: https://​www.​cdc.​gov/​dpdx/​schis​tosom​iasis/​modul​es/​Schis​tomes_​
LifeC​ycle_​lg.​jpg and https://​www.​cdc.​gov/​dpdx/​fasci​olias​is/​modul​es/​Fasci​ola_​LifeC​ycle_​lg.​jpg]: A Lifecycle of Schistosoma spp.: (1) Adult worms 
reproduce sexually in the venous system of the bladder (S. hæmatobium) or intestine (S. mansoni, S. intercalatum, S. guineensis), producing eggs 
which are excreted in the urine or faeces. (2) The eggs hatch upon contact with water, releasing miracidia which then enter a specific intermediate 
snail host. (3) Within the snail host, the miracidia develop into sporocysts and asexually reproduce daughter sporocysts which in turn produce 
cercariae. (4) The cercariae emerge from the snail and directly penetrate the skin of the human host. (5) After penetrating the skin of the human 
host, they transform into schistosomules. The schistosomules migrate via the circulatory system to the lungs and then the heart before arriving 
in the liver where they mature. Once mature, the adult worms emerge from the liver and mate in the mesenteric vessels of the intestine or bladder. 
B Lifecycle of Fasciola spp.: (1) immature eggs are evacuated into the bile ducts and passed in the faeces. (2) The eggs embryonate in freshwater 
for around 2 weeks. (3) The embryonated eggs release miracidia. (4) The miracidia invade a suitable intermediate host, a snail. In the snail, 
the parasites pass through several stages of development (sporocysts (4a), redia (4b) and cercariae (4c)). (5) The cercariae are released by the snail 
and encyst as metacercariae on aquatic vegetation or other substrates. (6) Humans and other mammals are infected by ingesting vegetation 
contaminated with metacercariae (e.g. watercress). (7) After ingestion, metacercariae excyst in the duodenum and penetrate through the intestinal 
wall into the peritoneal cavity. (8) Immature flukes then migrate through the liver parenchyma to the bile tract, where they become adult flukes 
and produce eggs. In humans, the maturation of metacercariae into adult flukes generally takes around three to 4 months. The development of F. 
gigantica may take slightly longer than that of F. hepatica [92]

https://www.cdc.gov/dpdx/schistosomiasis/modules/Schistomes_LifeCycle_lg.jpg
https://www.cdc.gov/dpdx/schistosomiasis/modules/Schistomes_LifeCycle_lg.jpg
https://www.cdc.gov/dpdx/fascioliasis/modules/Fasciola_LifeCycle_lg.jpg
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and infect humans by direct penetration through the 
skin.

Group 2 corresponds to an indirect cycle involving at 
least two IHs. One example is echinostomid flukes (Echi-
nostomiasis), which have a life cycle involving a first snail 
IH (families Planorbidae, Lymnaeidae and Bulinidae) and 
a second IH including other snails, fish, salamanders and 
tadpoles. The final host (mammalian: rat, dog, humans, 
and avian) becomes infected by consuming an infected 
IH (e.g. snails, clams, fish) [17] Supplementary Fig. S1).

Importance of asexual reproduction in freshwater snails
Asexual reproduction is an important phase in the mul-
tiplication of parasites in the intermediate snail host. 
The increase in the parasite population by asexual repro-
duction is based on miracidia, a single one of which can 
generate hundreds or even thousands of cercariae, which 
are released into the water by snails under the effect of 
temperature and light to infect the definitive host when 
they come into contact with contaminated water. Within 
snails, miracidia can replicate through several develop-
mental stages. In the case of schistosomes, there are two 
generations of sporocysts (mother and daughter sporo-
cyst stages) and then cercariae (furcocercariae). In Fas-
ciola spp., the development stages are sporocysts, rediae, 
and then cercariae, which encyst on aquatic vegetation 
and become metacercariae [18]. Control strategies based 
on mass drug treatments may be effective in reducing the 
number of eggs or adult parasites in the human or animal 
population, but transmission is still maintained by snails 
carrying the larval stages of these parasites. Thus, con-
trolling the intermediate snail hosts, or the larval stages 
of parasites within them, has the potential to stop trans-
mission from snails to humans [19].

Distribution of freshwater snails in Africa
Freshwater snails are intermediate hosts in the lifecy-
cles of various parasites. The geographical distribution 
of different species of freshwater snails (n = 43) from 
nine families, and of the infecting parasites, is described 
in Table 1. Bulinus is a group of freshwater snails in the 
gastropod genus, belonging to the Planorbidae family 
and the Bulininae subfamily. They are mainly responsible 
for transmitting larval schistosome parasites that infect 
humans (notably S. hæmatobium), and cattle (S. bovis 
and S. curassoni). The distribution of schistosome infec-
tions closely follows that of the intermediate host snails 
Bulinus spp., which are endemic in many parts of Africa 
including Angola, Benin, Chad, Côte d’Ivoire, Egypt, 
Ethiopia, Gambia, Ghana, Kenya, Niger, Nigeria, Senegal, 
South Africa, Sudan, Tanzania, and Uganda [20, 28, 29, 
31, 39, 42, 44, 45, 48]. The snails found in Africa are Bu. 
senegalensis, Bu. truncatus, Bu. globosus, Bu. umbilicatus, 

Bu. forskalii, Bu. africanus, Bu. crystallinus, Bu. ango-
lensis, Bu. nasutus and Bu. tropicus. The transmission 
of schistosomiasis differs significantly from one region 
to another and depends on the functions performed by 
the different Bulinus species from one ecological region 
to another. In the region of West Africa, S. hæmatobium 
and S. bovis are mainly transmitted by the species Bu. 
globosus and Bu. truncatus [4, 21, 25, 31, 55], Bu. sen-
egalensis and Bu. umbilicatus are also found in Senegal 
and the Gambia [4, 26] (Table 1). However, in East Africa 
(Ethiopia, Sudan, Kenya, Tanzania) and southern Africa 
(Angola, Malawi), in addition to Bu. globosus and Bu. 
truncatus, other snail vectors are involved (Bu. africanus, 
Bu. angolensis and Bu. nasutus) [28, 44].

Biomphalaria belongs to the genus of freshwater gas-
tropod snails, which are part of the family Planorbidae. 
They are the main intermediate hosts for the transmis-
sion of S. mansoni infection leading to intestinal schis-
tosomiasis and are generally found in tropical freshwater 
ponds in sub-Saharan Africa. Biomphalaria species can-
not survive outside freshwater, unlike Bulinus which 
can survive in temporary pools. There are several spe-
cies of Biomphalaria that are known vectors for the 
transmission of intestinal schistosomiasis in Africa. In 
this review, five of these were highlighted, namely Bi. 
pfeifferi, Bi. alexandrina, Bi. choanomphala, Bi. stanleyi 
and Bi. sudanica [37, 47–49, 58]. Other Planorbidae have 
been reported in Angola (Gyraulus costulatus) and The 
Gambia (Gyraulus sp.) [26, 46]. Studies have shown that 
Biomphalaria spp. can reside in slow moving waters with 
little wave action [59]. This seems to be a favourable con-
dition for miracidia to infest snails and undergo asexual 
reproduction to form cercariae. Several species of Biom-
phalaria are found in the Horn of Africa, in places such 
as Lake Victoria in Uganda, where significant transmis-
sion occurs [49], as well as in Kenya, Tanzania and Ethio-
pia [47, 48]. However, the predominant species in West 
Africa remains Bi. pfeifferi, which is strongly implicated 
in the transmission of S. mansoni. Bi. alexandrina is 
widely distributed in Egypt [37, 52].

The studies examined show that Lymnaea truncatula 
and L. natalensis coexist in certain East African coun-
tries, notably Ethiopia, Tanzania and Uganda, where 
F. hepatica and F. gigantica have been documented [42, 
43, 48]. However, in other countries such as Egypt (East 
Africa), Nigeria, Niger, Senegal, Benin (West Africa), 
Angola and South Africa (southern Africa), L. natalensis 
has been reported as the IH of F. gigantica [23, 25, 41–43, 
45, 46, 48, 54]. We have documented the Pseudosuccinea 
columella species only in Egypt, where it is found as an 
intermediate host of F. gigantica [16].

Other snail families have been documented in Africa, 
notably Thiaridae, Ampullaridae, Physidae, Succinidae, 
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Neritidae and Bithyniidae [16, 23, 46]. The species in 
these families are usually vectors or sometimes hosts of 
certain trematodes of veterinary interest, in particular 
Echinostoma cercariae or Xiphidiocercariae, as is the case 
with the Ampullaridae [38, 39, 45, 56]. The latter are also 
known to be bio-agents that predate other snail interme-
diate hosts.

Examples of snail‑borne parasitic diseases in Africa
Schistosomiasis
Schistosomiasis is caused by worms belonging to the 
genus Schistosoma, which infect the mammalian host by 
transcutaneous penetration. It is a water-borne disease, 
involving different species of schistosomes. These species 
have a very broad parasite spectrum worldwide, particu-
larly in subtropical Africa, with a geographical distribu-
tion that follows that of their hosts. These species have 
a very broad parasite spectrum worldwide, particularly 
in subtropical Africa, with a geographical distribution 
that follows that of their hosts. Schistosomiasis is one of 
the 20 neglected tropical diseases currently listed by the 
WHO [1], and represents a parasitic disease of consider-
able medical and veterinary importance in tropical and 
sub-tropical regions, especially in SSA [60].

Epidemiology and distribution
Schistosomiasis is one of the most widespread parasitic 
diseases in the world, with confirmed transmission in 
78 countries [3]. In 2021, it was estimated that at least 
251.4 million people needed preventive treatment against 
schistosomiasis in low-and middle-income countries 
in tropical regions [3]. In 2021, according to the WHO, 
schistosomiasis is now largely restricted to SSA, in poor 
communities without access to safe drinking water and 
adequate sanitation, where 90% of cases occur [3]. In this 
region, 600 million people are at risk of urogenital schis-
tosomiasis infection [3]. In total, six species (Schistosoma 
hæmatobium, S. mansoni, S. japonicum, S. mekongi, S. 
guineensis and S. intercalatum) are responsible for the 
two major forms of the disease. S. mansoni, S. japonicum, 
S. mekongi, S. guineensis and S. intercalatum cause intes-
tinal schistosomiasis and S. hæmatobium causes urogeni-
tal form. However, only four species are present in Africa, 
namely S. hæmatobium, S. intercalatum, S. guineensis 
and S. mansoni. S. mansoni is transmitted by snails of 
the genus Biomphalaria, the most endemic of which in 
Africa is the Bi. pfeifferi species [27, 29, 31, 38, 40, 47, 48]. 
In contrast, S. hæmatobium, which causes human uro-
genital schistosomias is the most widespread species [3], 
and is transmitted by Bulininae snails, mainly species in 
the genus Bulinus (Supplementary Fig. S2).

S. mansoni intestinal schistosomiasis is the most 
common form of schistosomiasis in the world, with a 

geographical distribution in Africa which closely fol-
lows that of S. hæmatobium (Supplementary Fig. S2). In 
addition to S. intercalatum and S. guineensis, S. mansoni 
causes intestinal and hepatic and intestinal schistoso-
miasis in mammals [3]. Tanzania has the second highest 
burden of schistosomiasis in the region after Nigeria [61, 
62]. In this review, S. rodhaini, a parasite mainly affecting 
rodents, was found in Bi. choanomphala in Uganda [63].

The urinary form, due to S. hæmatobium, is present in 
most countries on the African continent and in Mada-
gascar [3]. S. intercalatum and S. guineensis, two closely 
related species, are found in tropical rainforest areas in 
central Africa [42]. In addition to these species, other 
schistosomes exclusive to cattle are found throughout the 
continent. Some of these species are genetically related 
and form the S. hæmatobium complex, grouping together 
all the human and animal species related to S. hæmato-
bium and widely distributed in Africa (Fig. 3).

The Schistosoma hæmatobium complex
Members of the S. hæmatobium complex include three 
species that are pathogenic to humans (S. hæmatobium, 
S. intercalatum and S. guineensis) and five others that 
infect animals, especially wild and domestic ruminants 
(S. bovis, S. curassoni, S. mattheei, S. leiperi and S. mar-
grebowiei). Neither S. leiperi nor S. margrebowiei are 
widely distributed in Africa. These two species have been 
noted in East Africa but have not been the subject of in-
depth research [64]. Consequently, the group as a whole 
is of immense medical and veterinary importance. The 
species that make up the group are related and can inter-
act and possibly hybridise. This hybridisation may result 
in strains with a broader host spectrum and/or strains 
which are more resistant to treatment [31].

Fascioliasis
Fascioliasis is a zoonotic trematode disease transmitted 
by snails, which is of major health and economic impor-
tance [65]. Fascioliasis affects both domestic ruminants 
and humans. In humans, the disease is characterised 
by the destruction of liver tissue and the bile tract. This 
provokes inflammatory responses leading to hepato-
megaly or cirrhotic liver, accompanied by diarrhoea and 
anaemia. Lymnaea snails are suitable intermediate hosts 
for Fasciola spp. and live in contact with the definitive 
host (humans or cattle) around riverbanks [65]. We have 
two main species, namely F. hepatica Linne, 1758 and F. 
gigantica Cobbold, 1855.

Epidemiology and distribution
Fascioliasis is one of the most significant liver diseases 
of herbivores. It is caused by Fasciola spp. infection. Fas-
cioliasis is thought to cause economic losses in addition 
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to human suffering [53]. F. hepatica has a wider distribu-
tion than its tropical counterpart, F. gigantica, but their 
geographical distribution overlaps in many African coun-
tries, particularly Egypt, where both species are present 
[16, 54]. In Egypt, however, the transmission of F. gigan-
tica involves another species of snail in the genus Pseudo-
succinea. Grabner et al. [16] highlighted the ability of P. 
columella to transmit F. gigantica as well as its abundance 
as an invader in irrigation canals in the Fayoum governo-
rate in Egypt, with a prevalence of 3.83%. The endemicity 
of human fascioliasis has been noted in the North Africa, 
particularly in Egypt [16], and Ethiopia [66]. Human fas-
cioliasis is also present in other African countries such as 
Chad [67], South Africa [68] and Zimbabwe [69]. How-
ever, it remains less studied in less developed countries 
[70]. Animal fascioliasis has been widely reported in 
almost all the countries in the African equatorial belt 
[66], and in eastern and southern Africa [53] (Fig. 4).

In addition to the widespread geographical distribu-
tion of the FSBPDs mentioned above, other FSBPDs 
have been recorded in Africa. These include param-
phistomiasis, a disease of domestic and wild ruminants 

caused by Paramphistomoidea Fischoeder, 1901. This is 
a food-borne disease caused by trematodes belonging to 
several genera, including Calicophoron, Cotylophoron, 
Explanatum, Gigantocotyle and Paramphistomum [71]. 
The larval forms of these parasites encyst as metacer-
cariae in semi-aquatic plants, which are then consumed 
by DHs (mammals, especially domestic ruminants). The 
Paramphistoma cycle is similar to that of the large liver 
fluke, Fasciola spp. These two parasites share a com-
mon host in Lymnaea spp. The main difference between 
the two diseases lies in the location of the parasites in 
the animals’ bodies, and their development. In temper-
ate regions, paramphistomosis has a moderate impact 
on livestock, whereas it causes greater losses in African 
countries due to the poor general condition of ruminants 
[72]. A study carried out on snails from Kenya, Tanza-
nia and Egypt revealed Paramphistoma cercariae in Bu. 
forskalii (Calicophoron spp. and C. microbothrium), Bi. 
sudanica (Paramphistomoidae), Ceratophallus natalensis 
(Gastrothylacidae), and Gyraulus euphraticus [73]. Ismail 
et al. (2022) [38] identified Amphistoma cercariae in Bu. 
truncatus and Bi. pfeifferi as the first intermediate host.

Fig. 3  Distribution of schistosome species in Africa [93]
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Echinostomiasis is also a food-borne trematodiasis, 
caused by trematodes of the family Echinostomatidae 
Looss, 1899. Echinostomid flukes have a multi-host (indi-
rect) life cycle involving a first IH snail and a second IH 
including other snails, bivalves, fish, salamanders and 
tadpoles [74]. The final host (birds, carnivores, rodents 

and humans) becomes infected through consumption of 
metacercariae from the infected IH. Incidence is highest 
in areas where freshwater snails, clams, raw or under-
cooked fish and amphibians are consumed. A study by 
Laidemitt et  al. [74] highlighted the diversity of echi-
nostomes transmitted in Africa, focusing on the larval 

Fig. 4  A map showing the geographical distribution and occurrence of Fasciola spp. and their intermediate hosts, snails, in Africa. The taxa reported 
are symbolised next to the number of studies in each country [94]
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forms present in the IH Bulinus spp. and Biomphalaria 
spp. Similarly, Echinostoma cercariae have been found in 
Pila ovata (Ampullariidae) [45]. Mereta et al. [48] found 
a 36% prevalence of infection of Bi. pfeifferi by Echinos-
toma cercariae in the Omo Gibe River basin in south-
west Ethiopia.

Detection of parasitic infections in snails
Several methods are used to detect parasites in inter-
mediate snail hosts. Table  2 presents the information 
extracted from seven articles resulting from bibliographi-
cal research and developing some methods of parasitic 
diagnosis in snails.

Microscopic methods
As a general rule, infections in snails are detected by 
direct observation (microscopy). Snails are examined 
for sporocysts by crushing, or they are kept alive until 
cercariae are shed after exposure to light (Shedding 
test). The cercariae are then observed directly under the 
microscope [29, 37, 58].

Snail crushing
The technique involves using a microscope to look for 
the development of cercariae and sporocysts. Sporocysts, 
which are often located inside the snail’s foot and man-
tle, cannot be observed with the naked eye. Observation 
involves destroying the shell, dissecting the viscera and 
examining them under a binocular magnifying glass or 
microscope to collect immature parasites. This technique 
has been used by many authors to monitor the intensity 
of natural snail infestations [54]. This technique is inac-
curate in the early prepatent stage and is not ideal for 
large-scale field snail screening.

Cercarial shedding test
Patent infections in snails are defined by the excretion of 
cercariae, hence their ability to transmit parasites. Snails 
are generally tested for cercarial emergence immediately 
after collection or several days after collection.

Studies have used cercarial excretion tests to assess 
the infectious profile of snails [29, 58, 75]. This involves 
exposing living snails to natural or artificial light to stim-
ulate the emission of larval forms of the parasites. The 
cercariae were observed directly under a microscope or 
stained with iodine and Ehrlich’s haematoxylin or Nile 
blue sulphate [45] in order to better observe morphologi-
cal characteristics, and were then identified to subtype, 
genus and species level using morphological criteria. 
These criteria included snail excreting cercarial species, 
cercarial swimming behaviour, and resting position 
(Fig. 5A). Mohammed et al. [58], determined that 14.1% 
of snails excreted different types of cercariae including 

Schistosoma, Amphistoma, Echinostoma, Xiphidiocercar-
iae and Parapleurolophocercariae.

Shedding tests have a number of limitations and are 
not suitable for large-scale field studies. To improve test 
accuracy, it is often necessary to hold snails that have not 
shed for long periods of examination in the laboratory. 
However, mortality induced by observation time can be 
high and makes it difficult to perform large-scale infec-
tion tests on field snails. However, the sensitivity and/or 
specificity of these classic microscopic techniques (cer-
carial crushing and shedding tests) is problematic, hence 
the need for highly sensitive and specific techniques to 
detect the parasite in snails, such as the molecular PCR 
approach.

DNA‑based methods
Conventional PCR and real‑time polymerase chain reaction 
(RT‑PCR)
The classic PCR-based molecular technique is sensitive 
and specific for the detection of parasites in intermedi-
ate snail hosts [77]. It can be performed directly on DNA 
extracted from the snail or from cercariae previously iso-
lated on Whatman FTA Classic cards [37, 51, 79].

The most commonly used approach for detecting infec-
tions in snails involves RT-PCR amplification of repeated 
sequences, including Dra1 (S. hæmatobium complex) 
or SM1-7 (S. mansoni group). Fuss et al. [78] detected a 
35.4% infection rate of S. mansoni in Biomphalaria spp. 
in Tanzania using RT-PCR targeting a 121  bp tandem 
repeat sequence of S. mansoni strain SM 1–7 with Sm 
primers [78].  A study by Gaye et  al. [4] using Dra1 RT-
PCR detected 29.1% infection with the S. hæmatobium 
group in Bulinus spp. collected in Senegal. Allan et  al. 
(2013) [76]  in Zanzibar compared the infection rate of 
Bu. globosus using conventional diagnosis and real-time 
PCR. An infection rate of 3.96% was observed from con-
ventional cercarial excretion diagnosis, while a higher 
infection rate of 40–100% was detected with RT-PCR 
diagnosis. However, specificity may be problematic with 
Dra1 RT-PCR for S. haematobium complex.

To confirm RT-PCR results, it is necessary to perform 
classical PCR or specific amplicon sequencing (Fig. 5B). 
Some of the works included in this review have used clas-
sical PCR to characterize schistosome species. This con-
sists in amplifying gene regions specific to the parasite 
species. Gaye et al. [4] used the mitochondrial COI gene 
as a DNA barcode to detect and discriminate S. hæma-
tobium and S. bovis from Bulinus snail DNA extracts. 
In addition, Aboelhadid et  al. [37]  used conventional 
PCR and conventional diagnostics to compare their abil-
ity to detect S. mansoni infection in snails. The PCR test 
detected schistosomes in snails in contrast to conven-
tional diagnostic methods [77].
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Loop‑mediated amplification (LAMP)
In some cases, detection methods have evolved from 
PCR amplification to loop-mediated isothermal ampli-
fication (LAMP). This is based on a DNA amplification 
reaction at the same temperature. LAMP appears to be 
an interesting new technique for detecting trematodes 
in the intermediate host [80]. It uses four specially 
developed primers to recognise six different sequences 
on the target gene. According to [80], this technique 
has the advantage of reducing costly equipment and 
being easily adaptable to field laboratories. This is all 
the more true in Kenya, where local survey teams with 
no experience of molecular biology acquired opera-
tional expertise in the LAMP technique in the space 
of a few hours. In this study, the authors were able to 
detect comparable infection rates of Bulinus spp. by 
Schistosoma spp. between the LAMP technique (48.5%) 
and qPCR (52.4%) [80]. These results show the poten-
tial of the LAMP test for DNA amplification in condi-
tions where large-scale molecular biology equipment is 
unavailable, particularly in field laboratories.

Antibody‑based methods
An immunological technique has been developed to 
assess trematode infections in snail, using monoclonal 
antibodies [81]. The ELISA technique gave promising 
results, but is relatively cumbersome to set up, insofar 
as substantial equipment (spectrophotometer, oven) and 
complex biological reagents (monoclonal antibodies) are 
required.

Protein barcode‑based methods
MALDI‑TOF MS
Matrix-assisted laser desorption/ionisation time-of-flight 
mass spectrometry (MALDI-TOF MS) is a protein tool 
used routinely in clinical microbiology. More recently, 
it has been presented as an alternative tool for the rapid 
identification of freshwater snail intermediate hosts of 
schistosomes [21, 82, 83]. Studies have also shown that 
MALDI-TOF is a reliable technique for high-through-
put identification of Schistosoma cercariae of medical 
and veterinary importance and could be useful for field 
surveys in endemic areas [84]. There is currently no 

Fig. 5  Methods for detecting parasitic infections in snails: A cercarial shedding test, B PCR and sequencing, and C MALDI-TOF MS
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published work on the detection of pre-patent infection 
in snails by MALDI-TOF MS. However, we have obtained 
preliminary results on the identification of Schistosoma 
spp. infected versus uninfected Bi. pfeifferi using the 
MALDI-TOF MS protein tool (Gaye et  al. in press). In 
this study, the two groups were distinguished using spec-
tral profiles showing discriminative peaks, the dendro-
gram and Principal Component Analysis (Fig. 5C).

Control of intermediate host snails
Despite the general acceptance of the use of chemothera-
peutic drugs in the treatment of major trematodiasis, 
control of intermediate snail hosts plays an important 
role in FSBD control strategies. The use of molluscicides, 
complementing control efforts based on chemotherapy, 
sanitation and public health education, offers consider-
able potential for reducing disease transmission. Mollus-
cicides can be chemical (Niclosamide) or natural (plant 
extracts) [85].

Niclosamide or bayluscide is a product specially devel-
oped to control freshwater snails which act as interme-
diate hosts for schistosomiasis and other trematodoses 
such as fascioliasis [86]. It is effective against snails and 
their eggs, at low concentrations and within a few hours 
(Fig. 6A). A study carried out in Cameroon showed that 
niclosamide sensitivity varied according to snail spe-
cies and population. Egg embryos of Bi. pfeifferi were 
more sensitive than those of Bu. truncatus. However, 
in adults, Bu. truncatus was the most sensitive (100% 

mortality rate) [87]. This chemical also eliminates the 
free-living stages of the schistosome parasite present in 
the water (miracidia and cercariae). Niclosamide is, how-
ever, harmful to non-target aquatic fauna such as fish and 
frogs, which would limit its use.

The use of molluscicidal plant products is becoming 
attractive due to their environmental friendliness, acces-
sibility and ease of application. Mandefro et al. [85] dem-
onstrated that Achyranthes aspera (Amaranthaceae), a 
medicinal plant recognised in many regions of Ethiopia, 
has molluscicidal effect against to two species of snail, 
Bi. pfeifferi and L. natalensis. Similarly, in Egypt, Ibra-
him and Abdalla, [88] showed that the aqueous extract of 
Moringa oleifera seeds was toxic to Bi. alexandrina snails 
at a LC50 of 0.27 g/l.

Other methods have also been demonstrated, in par-
ticular the use of bio-agents predating on intermediate 
host snails. This is the case of the river shrimp species 
Macrobrachium vollenhovenii, introduced in a field 
experiment in Senegal as part of a schistosomiasis con-
trol programme. Sokolow et  al. [89] showed that the 
abundance of infected snails was 80% lower in the village 
where M. vollenhovenii had been introduced, leading to a 
18% ± 5% reduction in the prevalence of human schisto-
somiasis and 50% ± 8% reduction in the schistosome egg 
load in the shrimp farming villages compared with the 
control village (Fig. 6B).

In addition to direct control methods (chemical and 
biological), indirect methods have also been used. These 

Fig. 6  A Use of a chemical molluscicide [95] and B the predator prawn Macrobrachium vollenhovenii [86] against intermediate snail hosts
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involve modifying the snails’ environment by destroying 
their natural habitat, for example by periodically draining 
open irrigation channels and destroying the vegetation or 
weeding the riverbanks in order to hinder their develop-
ment [90].

It is important to note that other trematode or nema-
tode parasites (such as Angiostrongylus cantonensis) 
transmitted by freshwater snails, have not been reported 
in Africa or remain little studied. This is the case for 
paragonimosis and clonorchiasis, which are widespread 
in Asia, where they are endemic in certain regions [91]. 
These two food-borne diseases are particularly linked to 
the consumption of raw or poorly cooked fish or crus-
taceans (the second intermediate host). Further studies 
of these specific parasitic diseases would be interesting, 
given that intermediate hosts have been reported in 
Africa.

Conclusions
Parasitic diseases such as schistosomiasis and fasciolia-
sis caused by trematodes, involving freshwater snails as 
intermediate hosts, are present throughout the world, 
particularly in many African countries. These diseases 
are of great medical and veterinary importance and rep-
resent a heavy public health burden in Africa. The main 
control strategies for these diseases target the defini-
tive host, although treatment of humans and livestock 
has been associated with reinfections or the presence of 
drug-resistant strains. Hence the need to develop strat-
egies for controlling intermediate snail hosts. Indeed, 
stopping the parasitic development cycle before infection 
of the definitive vertebrate host appears to be a promis-
ing control strategy. However, further studies aimed at 
improving our currently limited knowledge of the biol-
ogy of these snails, in particular their ecology and epide-
miology, are mandatory before such approaches can be 
effectively implemented in large-scale control programs. 
In this respect, the use of modern diagnostic tools, in 
particular PCR and MALDI-TOF MS, would enable us 
to better assess the diversity of parasites infecting snails, 
and to understand snail-parasite relationships in order to 
refine control strategies directed against snails. However, 
a limitation of our review is that infection prevalence 
data in freshwater snails have not been traced in all the 
studies included. Traditional approaches such as cercar-
ial excretion are widely used and may not only underes-
timate infection in snail hosts but also increase the risk 
of parasite misidentification compared with innovative 
molecular biology or spectrometry tools. Hence further 
studies or reviews are warranted to shed light on these 
different aspects.
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