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Abstract 

Background Diabetes is more apparent in adulthood but may be dormant in childhood and originates during early 
fetal development. In fetal biometry, femur length (FL) is crucial for assessing fetal growth and development. This 
study aimed to assess potential associations between fetal femur growth and prediabetic biomarkers in Bangladeshi 
children.

Methods A cohort study embedded in a population-based maternal food and micronutrient supplementation 
(MINIMat) trial was conducted in Matlab, Bangladesh. The children in the cohort were followed up until 15 years 
of age. In the original trial, pregnancy was confirmed by ultrasound before 13 gestational weeks (GWs). Afterward, 
ultrasound assessments were performed at 14, 19, and 30 GWs. FL was measured from one end to the other, captur-
ing a complete femoral image. The FL was standardized by GW, and a z-score was calculated. FBG and HbA1c lev-
els were determined in plasma and whole blood, and the triglyceride–glucose index, a biomarker of insulin resistance, 
was calculated as Ln [fasting triglycerides (mg/dl) × fasting glucose (mg/dl)/2]. Multivariable linear regression analysis 
using a generalized linear model was performed to estimate the effects of FL at 14, 19 and 30 GWs on prediabetic bio-
markers at 9 and 15 years of age. Maternal micronutrient and food supplementation group, parity, child sex, and BMI 
at 9 years or 15 years were included as covariates.

Results A total of 1.2% (6/515) of the participants had impaired fasting glucose during preadolescence, which 
increased to 3.5% (15/433) during adolescence. At 9 years, 6.3% (32/508) of the participants had elevated HbA1c%, 
which increased to 28% (120/431) at 15 years. Additionally, the TyG index increased from 9.5% (49/515) (during pread-
olescence) to 13% (56/433) (during adolescence). A one standard deviation decrease in FL at 14 and 19 GWs was asso-
ciated with increased FBG (β = − 0.44 [− 0.88, − 0.004], P = 0.048; β = − 0.59 [− 1.12, − 0.05], P = 0.031) and HbA1c 
(β = − 0.01; [− 0.03, -0.005], P = 0.007; β = − 0.01 [− 0.03, − 0.003], P = 0.018) levels at 15 years. FL was not associated 
with diabetic biomarkers at 9 years.

Conclusion Mid-trimester impaired femur growth may be associated with elevated prediabetic biomarkers in Bang-
ladeshi adolescents.
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Background
Diabetes mellitus (DM) is one of the major non-com-
municable diseases worldwide and is associated with 
increased morbidity and mortality at all stages of life. 
According to the International Diabetes Federation 
(IDF), approximately 573 million people aged between 
20 and 70 years are currently living with diabetes, which 
might increase to more than 700 million by 2045 [1]. In 
Bangladesh, about 13 million people were diagnosed as 
diabetic in 2021, with 5.7 million undiagnosed cases who 
were unaware of their metabolic disorder [2]. In addition, 
the increase in childhood-onset diabetes in Bangladesh 
is concerning. A retrospective study conducted using the 
clinical records of the diabetic association of Bangladesh 
revealed that from 2011 to 2018, in total, 725 children 
and adolescents (< 20 years old) were diagnosed diabetic, 
with a 12% average annual increase in the incidence of 
type 2 diabetes [3].

Type 2 diabetes mellitus (T2DM) might have an early 
onset in childhood, and in most cases, it remains asymp-
tomatic and unrecognized [4]. Therefore, it is highly chal-
lenging to estimate the risk of diabetes in childhood. To 
date, studies have focused on lifestyle behaviors such as 
unhealthy diet, physical inactivity, sedentary behaviors, 
obesity, and rapid urbanization as risk factors for the 
development of T2DM in children and adolescents [5]. 
However, T2DM is a complex metabolic disorder, and it 
has been suggested that restricted fetal growth due to an 
adverse intrauterine environment may impact the risk of 
cardiometabolic diseases in adulthood [6]. The “Thrifty 
Phenotype” hypothesis was first introduced by Barker 
and Hales, which stated that fetal development is critical 
in human life and can influence the likelihood of develop-
ing non-communicable diseases later in life. It suggested 
that in an adverse intrauterine environment, the major-
ity of nutrients in a fetal body are directed towards the 
vital organs, such as the brain and heart, essential for 
fetal survival, resulting in an undersupply of nutrition to 
the peripheral organs. Therefore, the imbalanced nutri-
ent distribution can disrupt glucose homeostasis in the 
liver, muscles, and bones, potentially leading to insulin 
resistance [7]. Subsequently, the Developmental Origins 
of Health and Disease (DOHaD) concept was formu-
lated and has gained wide acceptance in recent decades. 
This theory demonstrated that any threats during the 
preconception or prenatal periods, for instance, placen-
tal insufficiency or maternal undernutrition, can signifi-
cantly impact the health of the offspring in adulthood 
[8]. According to DOHaD theory, a fetus experiencing 
undernutrition in utero may maintain good health later 
if the nutritional status remains consistent postnatally. 
Nevertheless, the children who confronted fetal growth 
restriction (FGR) due to suboptimal nutritional status are 

at a high risk of developing metabolic syndrome when 
exposed to excessive energy or an obesogenic diet after 
birth [9].

The GUSTO cohort study conducted in Singapore 
uncovered that postnatal catch-up growth from birth 
to age 2, irrespective of whether FGR had occurred, 
was associated with high cardiometabolic risks during 
childhood [10]. An animal study also revealed that mice 
experiencing rapid growth after intrauterine growth 
restriction (IUGR) showed greater insulin resistance than 
those with lower growth post IUGR [11]. A small-scale 
Australian cohort study reported that constrained fetal 
growth trajectories during early pregnancy were related 
to insulin resistance among young adults [12]. Further-
more, another cohort study demonstrated an inverse 
relationship between fetal biparietal diameter, birth-
weight, and insulin resistance among 20-year-old adults 
[13]. Additionally, a cohort in China showed that the 
fetuses exposed to a famine exhibited a 1.2-fold increased 
risk of developing type 2 diabetes in adulthood [14].

During pregnancy, fetal growth is assessed through 
various parameters, including head size measurements, 
abdominal circumference, and femur length (FL) [15]. FL 
is the sole bone measurement included in fetal growth 
assessments, providing accurate information about gesta-
tional age, fetal growth, and development [16]. The femur 
bone begins developing early in pregnancy but undergoes 
substantial growth during the second trimester, becom-
ing apparent in ultrasound assessments [17]. As the larg-
est bone in human body, the femur plays a significant 
role in high bone mineral deposition, including calcium, 
phosphorus, and magnesium [18]. Research suggests that 
these minerals, particularly calcium, are required for the 
optimal function of pancreatic β-cells [19]. Adequate cal-
cium levels were reported to be correlated with enhanced 
insulin sensitivity, facilitating efficient cellular response 
to insulin and glucose uptake [20]. In addition, recent 
studies indicate that bones and skeletal muscles have 
endocrine functions, particularly in regulating glucose 
metabolism. Osteocalcin, a bone-derived protein, has 
been shown to be significantly associated with increasing 
insulin sensitivity and glucose metabolism [21]. There-
fore, an impaired fetal femur growth could impact glu-
cose metabolism in adulthood through reduced nutrition 
and mineral deposition.

The risk of IGT, and therefore, the risk of T2DM, is 
more evident in adulthood, yet such metabolic dysfunc-
tion may originate during early fetal development [22]. 
Most studies have focused on the effect of overall growth 
patterns resulting in low birth weight on the develop-
ment of T2DM later in life [23, 24]. Nevertheless, birth 
weight does not provide information about the longitudi-
nal fetal growth pattern. Also, the estimated fetal weight 
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(EFW) is used for predicting fetal growth and potential 
neonatal or maternal complications during and after 
delivery [25]. However, EFW is a combined measure of 
multiple fetal parameters that can be affected by various 
external factors [26]. Consequently, it does not indicate 
specific fetal growth and development. In this study, we 
aimed to understand whether the growth pattern of the 
femur bone during fetal stage influences the risk of meta-
bolic disorders later in life.

Methods
Study design, area, and participants
This was a cohort study embedded in a population-based 
food and micronutrient supplementation trial (MINI-
Mat trial) conducted between 2001 and 2003 in Matlab, a 
rural area of Bangladesh (ISRCTN 16581394), to examine 
the efficacy of several food and multimicronutrient sup-
plements during pregnancy to improve birth and neona-
tal health outcomes among 4436 pregnant women. The 
primary outcomes of the MINIMat trial were the pos-
sible effects of prenatal food and micronutrient enrich-
ment on maternal weight gain, hemoglobin status and 
infant mortality [27]. Matlab is approximately 75  km 
southeast of Dhaka (the capital of Bangladesh), where 
the International Centre for Diarrheal Disease Research, 
Bangladesh (ICDDR, B), a global health research insti-
tute, runs a health and demographic monitoring system 
with four connected health care centers offering health 
care to the local population, covering 246,893 people 
[28]. In the trial, women were confirmed to be pregnant 
by the community health research staff during monthly 
scheduled house visits based on the last menstrual 
period (LMP) and a urine test. Pregnant women, pref-
erably at 8 to 13  weeks of gestation were invited to the 
nearest health care center for pregnancy confirmation 
through ultrasound and, therefore, to be enrolled in the 
study. The recruited participants were randomly assigned 
to two food groups, early (gestational week 9) or usual 
(gestational week 20) and subdivided into three micro-
nutrient groups from gestational week 14: (a) 30 mg iron 
with 400 mg folic acid; (b) 60 mg iron with 400 mg folic 
acid; and (c) 15 different micronutrient preparations 
by UNICEF. Maternal anthropometric measurements, 
gestational age at birth, and infant  mortality were also 
recorded in the MINIMat trial. During the pregnancy, 
about 20% of women were lost to follow-up due to spon-
taneous abortion (n = 236), migration (n = 188), stillbirth 
(n = 89), withdrawal of consent (n = 129), and others and 
approximately 1.8% of the live-born infants were twins 
(n = 65) [27]. During the antenatal ultrasound assess-
ments, the cases of congenital malformations, e.g., spina 
bifida and hydrocephalus, were referred to tertiary hospi-
tals in Dhaka city. Therefore, they were lost to follow-up 

and excluded from the study. In total, 3591 women gave 
birth to singleton live-born infants. The children were 
then examined at 4.5 years, 9 years, and 15 years of age 
[29]. To minimize the number of tests and the repeti-
tive collection of biological samples from each child, the 
children were divided into two groups after 4.5 years of 
age based on their birth years (Group A: April 2002–June 
2003; Group B: June 2003–June 2004) [30]. A sub-cohort 
of children born primarily in facilities from Group B was 
selected and referred to as the ‘Immune cohort’ (n = 640). 
We evaluated the same group of children derived from 
the immune cohort at 9  years as ‘preadolescents’ and 
15  years as ‘adolescents’. About 16% of children from 
the immune cohort were lost to follow-up before 9 years 
(n = 540) because of migration (n = 42), withdrawal of 
consent (n = 39), refusal of blood collection (n = 7) and 
others. Finally, at 15 years old, we followed up with 502 
children as 38 participants were lost to follow-up due to 
migration (Fig. 1).

Fetal growth markers and birth anthropometry
All the participants in the MINIMat trial were assessed 
using ultrasound during pregnancy. The first ultrasound 
test was performed during enrollment (between 8 and 
13 weeks of gestation) to determine the gestational age 
(GA). Enrolled participants were invited for further 
ultrasound exams at nearly 14  weeks, 19  weeks, and 
30 weeks of gestation. During each ultrasound test, fetal 
biometry parameters were measured. FL was measured 
by capturing a complete femoral picture from end to 
end. Three measurements were taken at each session, 
and the average of these measurements was calculated 
[30]. This study used fetal femur length measurement as 
the predictor variable. Fetal FL is a crucial fetal biome-
try parameter for assessing potential growth restriction 
[31]. The femur is the longest bone in the human body, 
with substantial bone mineral deposition. Thus, short 
fetal femur length might induce alteration in glucose 
metabolism, therefore, metabolic risks later in life. Fetal 
growth measurements were taken using an ultrasound 
machine with a 3.5  MHz standard convex probe (SSA 
320A, Justavision-200; Toshiba, Tokyo, Japan). In total, 
four ultrasound machines were installed at four clinics 
(one ultrasound machine at each clinic) [30]. The ultra-
sound measurements were performed by nine trained 
paramedics following the WHO ultrasound guidelines 
[32]. Detailed information regarding the inter- and 
intra-observer variance in ultrasound measurements 
is provided elsewhere [33]. The fetal parameters were 
standardized by gestational age. Expected means and 
standard deviations were calculated using Chitty’s for-
mula [34]. Subsequently, z-scores for the fetal param-
eters were derived from the observed average mean, 
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expected mean, and standard deviation. The mothers’ 
recalled LMP was used to calculate the number of ges-
tational weeks. Missing LMP data were replaced with 
ultrasound determined LMP data. A change in fetal 
femur length was described by a shift in FL z-scores.

In 2002–2004, about 40% of all children were born 
in healthcare facilities and for the infants delivered at 
home, a birth notification system was administered, 
assisting paramedics to measure the birth anthropom-
etry. Birth weight was measured primarily within 72 h 
of delivery using SECA electronic scales (SECA, Ham-
burg, Germany) with an accuracy of 10 g. Birth weights 
measured within the first 24  h post-delivery were not 
adjusted. However, the measurements collected from 
24 h to 30 days after birth were adjusted using a stand-
ard deviation score (SDS) transformation based on the 
assumption that infants maintained the same relative 
position within the anthropometric distribution during 
this period [35, 36].

Diabetic biomarkers
Blood samples were collected from the participants at 
both 9 (n = 540) and 15 (n = 460) years of age. Briefly, at 
the Matlab field site, blood samples were collected in 
lithium-heparin-containing tubes, and plasma was sepa-
rated from the venous blood by centrifugation. Finally, 
both whole blood and plasma samples were sent to the 
ICDDR, B Dhaka lab and stored at − 80  °C. On the day 
of analysis, the frozen plasma samples were thawed, vor-
texed, and analyzed to determine fasting blood glucose 
and triglyceride (TG) levels by enzymatic colorimetry 
using the fully automated clinical chemistry analyzer 
Cobas c311 (Roche Diagnostics Mannheim, Germany). 
Glycated hemoglobin (HbA1c) in whole blood was meas-
ured by a turbidimetric inhibition immune assay using a 
Cobas c311 [29]. The triglyceride–glucose (TyG) index 
was computed as Ln [fasting TG (mg/dl) × fasting glucose 
(mg/dl)/2] [37]. The TyG index has emerged as a reliable 
surrogate marker for insulin resistance (IR). Research 

Fig. 1 Flowchart of children recruitment and metabolic biomarkers analyzed in a smaller cohort nested in the MINIMat trial
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indicates that the TyG index is a superior biomarker 
for detecting type 2 diabetes mellitus, outperforming 
HOMA-IR, the most common diabetic biomarker in 
children and adults [38]. During childhood, determining 
a reference or cutoff value for indicating IR is challenging 
due to the pubertal stage and various underlying physio-
logical changes, preventing the establishment of a stand-
ard reference value. Nevertheless, due to the simplicity 
and efficiency, studies have proved that TyG can effec-
tively predict the risk of diabetes among these groups of 
people. Therefore, in this study, the TyG index has been 
considered a diabetic biomarker due to its effectiveness 
in identifying diabetes risk among children and adoles-
cents [39, 40]. In this study, prediabetes was defined as 
FBG level of ≥ 100 mg/dL, HbA1c level of ≥ 5.7% to 6.4%, 
and TyG index of more than 8.6 [41, 42].

Statistical analyses
Descriptive statistics were used to describe the study 
participants and the distribution of diabetic biomark-
ers. Bivariate analysis was carried out using Pearson cor-
relation between the predictor variables (FL z-scores at 
gestational weeks 14, 19 and 30), outcome variables (dia-
betic biomarkers: FBG, HbA1c and the TyG index) and 
the covariates (mentioned below). All predictor and out-
come variables were assessed for linearity in scatter plots. 
Multivariate linear regression analysis using a general-
ized linear model (linear function) was used to estimate 
associations between FL z-scores at 14, 19 and 30 gesta-
tional weeks and diabetic biomarkers at 9 and 15  years 
of age. A mediation analysis was performed using the 
Sobel test, assuming the adolescents’ BMI (at the 15-year 
model) might have a mediating effect on the outcomes. 
However, the adolescents’ BMI did not act as a media-
tor in the 15-year model. Hence, participants’ BMI at 9 
and 15 years (at  9-year and 15-year models) were con-
sidered as  covariates. The models were adjusted for the 
following covariates: maternal food (categorical; early 
and usual) and micronutrient supplements (categorical; 
30 mg Fe with 400 mg folic acid, 60 mg Fe with 400 mg 
folic acid and 15 different micronutrient preparations 
by UNICEF) taken in early pregnancy (MINIMat trial), 
parity (ordinal), child sex (categorical; male and female), 
BMI (continuous) at 9 years of age (for the 9-year model) 
and BMI (continuous) at 15 years of age (for the 15-year 
model). The covariates were selected based on the known 
risk factors. Initially, maternal BMI at gestational weeks 
8 was also considered as a potential confounder. How-
ever, the variable did not significantly influence the 
outcomesat both 9 and 15 years. Thus, the variable was 
excluded later  from the models. Residual distributions 
were checked for all outcomes using residual and fit-
ted plots. BMIs at 9 and 15 years of age were positively 

skewed. Therefore, the variables were Ln transformed to 
obtain normally distributed residuals in the regression 
analyses. Stratification analysis was performed for the FL 
z-score at gestational weeks 14, 19 and 30 with maternal 
food and supplementation groups during pregnancy for 
each outcome in both 9 and 15 years models. However, 
no significant differences in outcomes were found among 
the groups. Additionally, no effect modification of the FL 
z-score and child sex were observed. Thus, gender-strati-
fication analysis was not performed. Furthermore, multi-
collinearity was verified among the independent variables 
for each outcome. We defined statistical significance as 
5%. SPSS version 29.0 was used for all the analyses.

Results
Maternal and child characteristics
Out of 540 children at 9  years, we excluded 24 due to 
unavailable valid birth anthropometric data. Hence, 
516 children were included in the 9-year analysis. Also, 
at 15 years, 69 children were excluded from the analysis 
because of no valid birth anthropometric data (n = 27) 
and refusal to blood collection (n = 42). Therefore, 433 
children were included in the analysis. Table  1 shows 
the characteristics of the mothers and their children. 
The mean (SD) maternal age was 26.4 (5.8) years at the 
time of recruitment for the MINIMat trial. At baseline 
(gestational week 8), the mean (SD) maternal BMI was 
20.6 kg/m2 (2.9). The ratio of male to female children was 
1:1.04. At birth, 24% of the children had low birth weights 
(< 2500  g), and 10% were born preterm (< 37  weeks of 
gestation). The mean (SD) BMI of the children at 9 years 
of age was 14.3  kg/m2 (1.7), and that at 15  years of age 
was 19.1  kg/m2 (3.5). The median FL z-score was 0.4 
(range: − 8, 11) at gestational week 14, 0.9 (range: − 7.0, 

Table 1 Maternal and children characteristics

a Missing value (n = 10)

Characteristics Value

Maternal characteristics (n = 516)

 Maternal age (year); mean, SD 26.4 ± 5.8

 Mothers’ BMI at gestational week 8; mean, SD 20.6 ± 2.9

 Primigravida; n (%) 156 (30.4%)

Children characteristics (n = 516)

 Child sex; males; n (%) 253 (49%)

 Low birthweight (< 2500 g); n (%) 123 (24%)

 Preterm birth (< 37 gestational weeks); n (%) 50 (10%)

 BMI at 9 years old; mean, SD 14.3 ± 1.7

 BMI at 15 years old; mean, SD (n = 433) 19.1 ± 3.5

 FLz score at gestational weeks 14; median, range 0.4 (− 8, 11)

 FLz score at gestational weeks 19; median,  rangea 0.9 (− 7.0, 9.6)

 FLz score at gestational weeks 30; median, range 0.5 (− 4.8, 5.2)
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9.6) at gestational week 19 and 0.5 (range: − 4.8, 5.2) at 
gestational week 30.

Distribution of diabetic biomarkers at 9 and 15 years 
of age
Only 1.2% of the children had a higher FBG level at 
9 years of age (100–125 mg/dl), which increased to 3.5% 
at 15  years of age. During preadolescence, 6.3% of the 
children had HbA1c level of 5.7% to 6.4%, while the per-
centage increased to 28% during adolescence. On the 
other hand, the TyG index indicated that 9.5% of the chil-
dren were in the prediabetic stage (> 8.6) at 9 years of age, 
which was  13% at 15 years of age (Table 2).

Association of standardized fetal femur length 
with diabetic biomarkers during preadolescence
The FL z-score at gestational weeks 14, 19 and 30 was 
not associated with any diabetic biomarkers (FBG (at 

GW 14, β = − 0.08, 95% CI = − 0.43, 0.26; at GW 19, 
β = − 0.10, 95% CI = − 0.52, 0.32; at GW 30, β = − 0.18, 
95% CI = − 0.79, 0.42), HbA1c (at GW 14, β = 0.01, 95% 
CI = − 0.001, 0.02; at GW 19, β = 0.01, 95% CI = − 0.003, 
0.02; at GW 30, β = 0.01, 95% CI = − 0.007, 0.03), or TyG 
index values [at GW 14, β = − 0.006, 95% CI = − 0.02, 
0.009; at GW 19, β = − 0.003, 95% CI = − 0.02, 0.01; at 
GW 30, β = − 0.01, 95% CI = − 0.04, 0.008)] at 9 years of 
age; only a few children were found to have any indica-
tion of positive diabetic markers at this age (Table 3).

Association of standardized fetal femur length 
with diabetic biomarkers during adolescence
Table  4 shows the estimated associations of the FL 
z-score with diabetic biomarkers at 15  years of age. 
The FL z-score at gestational weeks 14 and 19 was 
negatively associated with the FBG level at 15  years 
of age (β = − 0.44, 95% CI = − 0.88, − 0.004, P = 0.048) 

Table 2 Diabetic biomarkers at 9 and 15 years of age of children living in Matlab

TyG index was calculated by Ln [fasting TG (mg/dl) × fasting glucose (mg/dl)/2] [37]
a Missing value (n = 1)
b Missing value (n = 8)
c Missing value (n = 1)
d Missing value (n = 2)

Metabolic biomarkers Children (n = 516) Boys (n = 254) Girls (n = 262)

At 9 years old age

 Fasting blood glucose (FBG)a, mg/dl 77 ± 9.2 78 ± 9.6 76 ± 8.7

 Glycated hemoglobin (HbA1c)b, % 5.2 ± 0.3 5.2 ± 0.3 5.2 ± 0.3

 Triglyceride- glucose (TyG)  indexc 8 ± 0.4 8 ± 0.4 8.1 ± 0.4

 Metabolic biomarkers All (n = 433) Boys (n = 205) Girls (n = 228)

At 15 years of age (n = 433)

 Fasting blood glucose (FBG), mg/dl 78.2 ± 10.3 78.1 ± 11.6 78.3 ± 9

 Glycated hemoglobin (HbA1c)d, % 5.5 ± 0.3 5.5 ± 0.2 5.5 ± 0.3

 Triglyceride–glucose (TyG) index 8.1 ± 0.4 8 ± 0.5 8.1 ± 0.4

Table 3 Association of FL_z score and diabetic biomarkers at 9 years old age

The model was adjusted for mothers’ micronutrient supplementation (categorical) and food supplementation (categorical) during pregnancy, parity (ordinal), children 
sex (categorical), BMI at 9 years (continuous). BMI at 9 years was ln transformed.

β regression coefficient, CI confidence interval, TyG index triglyceride–glucose index, FBG fasting blood glucose, HbA1c glycated hemoglobin
a Missing value (n = 10)
b Missing value (n = 1)
c Missing value (n = 8)
d Missing value (n = 1)

Biomarkers Gestational weeks 14 (n = 516) Gestational weeks 19 (n = 506)a Gestational weeks 30 (n = 516)

β (95% CI) P-value β (95% CI) P-value β (95% CI) P-value

FBG (mg/dl)b − 0.08 (− 0.43, 0.26) 0.636 − 0.10 (− 0.52, 0.32) 0.641 − 0.18 (− 0.79, 0.42) 0.552

HbA1c (%)c 0.01 (− 0.001, 0.02) 0.087 0.01 (− 0.003, 0.02) 0.119 0.01 (− 0.007, 0.03) 0.208

TyG  indexd − 0.006 (− 0.02, 0.009) 0.438 − 0.003 (− 0.02, 0.01) 0.718 − 0.01 (− 0.04, 0.008) 0.164
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(β = − 0.59, 95% CI = − 1.12, − 0.05, P = 0.031). However, 
the FL z-score at gestational week 30 did not affect the 
FPG level at 15  years of age. A one-SD decrease in the 
FL z-score at gestational weeks 14 and 19 was signifi-
cantly associated with a higher HbA1c level at 15  years 
of age (β = − 0.01, 95% CI = − 0.03, − 0.005, P = 0.007) 
(β = − 0.01, 95% CI = − 0.03, − 0.003, P = 0.018). Nev-
ertheless, the FL z-score at gestational week 30 was not 
associated with the HbA1c level during adolescence. 
Additionally, no association was found between any 
gestational week measurement and the TyG index in 
adolescents.

Discussion
Our findings indicate that a shorter standardized fetal 
femur length at gestational weeks 14 and 19 was asso-
ciated with higher fasting blood glucose and glycated 
hemoglobin levels among 15-year-old Bangladeshi ado-
lescents which did not appear in their preadolescence.

Fetal growth restriction is a public health concern that 
is considered to be a predictor of developing cardiomet-
abolic diseases in adulthood. As previously discussed, 
the “Thrifty Phenotype” hypothesis explains that nutri-
tional stress during fetal development compromises the 
development of peripheral organs, leading individuals 
to poorer tolerance of various physiological and envi-
ronmental changes later in life. The populations under-
going rapid industrialization, characterized by increased 
dietary fat and sugar intake and decreased physical 
activity levels, are initially exposed to inadequate gly-
cemic control and eventually to diabetes [43]. Also, the 
DOHaD concept has advanced our understanding of how 
animals and humans respond to adverse environmental 
conditions by altering their characteristics to cope with 
adversity. However, studies are being conducted to iden-
tify a more integrated and longitudinal approach in the 
future to predict the risk of developing metabolic disor-
ders at the earlier stage of life. As the primary applica-
tion of the DOHaD concept involves identifying, thereby 

preventing, or mitigating the likelihood of developing 
diseases later in life, a stronger emphasis is needed to 
identify the risk factors before symptoms manifest in 
adolescence to reduce the disease burden in adulthood 
[44].

FGR diminishes the β-cell mass responsible for insu-
lin secretion and increases peripheral glucose and insu-
lin sensitivity, which leads to impaired glucose tolerance 
and the onset of T2DM later in life [45]. Furthermore, in 
animal-based studies, FGR due to placental insufficiency 
showed metabolic alterations and led to insulin resistance 
in skeletal muscles during early adulthood [46, 47]. Fetal 
femur length is an essential part of fetal ultrasonography, 
which can predict potential restricted fetal growth during 
pregnancy [48]. Short fetal femur length mid-pregnancy 
has been proved to be associated with an increased risk 
of small for gestational age, preterm birth, and poor peri-
natal outcomes [49]. A cohort study in China demon-
strated that fetuses with fast femur growth in early and 
mid-pregnancy had higher insulin levels in cord blood at 
birth [50].

The underlying pathway by which fetal femur bone 
length elevates diabetic biomarkers has not been 
explored. However, recent evidence in bone biology 
suggests that bone and skeletal muscles have endocrine 
functions, especially in glucose metabolism [51]. Osteo-
calcin, a bone-derived protein secreted from osteoblasts, 
has repeatedly been found to increase β-cell mass pro-
liferation and improve insulin sensitivity and glucose 
homeostasis [52]. Studies have shown that serum osteo-
calcin is a multifunctional bone marker that is inversely 
associated with higher blood glucose levels, HbA1c lev-
els and increased insulin resistance in adults [53–55]. 
The serum osteocalcin level has been reported to have 
an inverse relationship with the HbA1c level among dia-
betic patients, which indicates that osteocalcin might 
play a crucial role in glycemic control [56]. The femur is 
the largest bone in the human body and is responsible 
for high bone mineral deposition [57]. FGR might affect 

Table 4 Association of FL_z score and diabetic biomarkers at 15 years old age

The model was adjusted for mothers’ micronutrient supplementation (categorical) and food supplementation during pregnancy (categorical), parity (ordinal), children 
sex (categorical), BMI at 15 years (continuous). BMI at 15 years was ln transformed

β regression coefficient, CI confidence interval, TyG index triglyceride–glucose index, FBG fasting blood glucose, HbA1c glycated hemoglobin
a Missing value (n = 9)
b Missing value (n = 2)

Biomarkers Gestational weeks 14 (n = 433) Gestational weeks 19 (n = 424)a Gestational weeks 30 (n = 433)

β (95% CI) P-value β (95% CI) P-value β (95% CI) P-value

FBG (mg/dl) − 0.44 (− 0.88, − 0.004) 0.048 − 0.59 (− 1.12, − 0.05) 0.031 − 0.49 (− 1.27, 0.28) 0.212

HbA1cb (%) − 0.01 (− 0.03, − 0.005) 0.007 − 0.01 (− 0.03, − 0.003) 0.018 − 0.01 (− 0.03, 0.008) 0.218

TyG index − 0.01 (− 0.03, 0.001) 0.064 − 0.01 (− 0.03, 0.006) 0.153 − 0.01 (− 0.04, 0.01) 0.313
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chondrocyte formation and function, reducing femur 
bone development [48]. Therefore, a short femur length 
might lead to reduced bone mineral deposition and 
lower osteocalcin levels in the fetus. The development of 
the human skeleton commences during fetal growth via 
endochondral bone formation, which starts with embry-
onic mesenchymal cells [58]. FGR was found to reduce 
mesenchymal proliferation and endochondral ossifica-
tion, resulting in altered postnatal bone mineralization 
in animal models [59, 60]. Studies in both animals and 
humans have shown that maternal diet during the third 
trimester of pregnancy significantly influences bone mass 
density in offspring [61, 62]. Furthermore, a prospective 
cohort study showed that fetal and postnatal growth pat-
terns affect bone mineral density in both SGA and nor-
mal-birth-weight infants [63].

Our study revealed that fetal femur length at gesta-
tional week 30 was not associated with elevated diabe-
tes risk during adolescence. The potential reason might 
be the peak bone mineral deposition in the fetus around 
the last trimester. During fetal life, the placenta actively 
exchanges essential minerals, including calcium, phos-
phorus, and magnesium. Studies have proved that the 
accumulation of such minerals, especially calcium, 
increases by about 80% in the last trimester, which is 
essential for skeletal development and mineralization [64, 
65].

Additionally, no association was found between fetal 
femur bone length and metabolic risk at 9  years of age. 
Metabolic changes occur as age increases. Most of the 
well-established consensus definitions and cutoff points 
for predicting the risk of metabolic syndrome are tar-
geted for adults. However, it is challenging to identify 
the ideal cutoff values to predict metabolic syndrome in 
children aged < 10  years, as cardiometabolic risks might 
be hidden because of several physiological and puber-
tal changes [66]. Hence, although we did not detect 
any statistically significant associations between fetal 
femur length and diabetic biomarkers at 9  years of age, 
we detected a marked association between femur bone 
length and an increased risk of diabetes at 15 years of age 
among the same study sample.

This study has several strengths. To our knowledge, 
this is the first longitudinal cohort study examining the 
associations between fetal femur bone length and ele-
vated diabetic biomarkers in Bangladeshi children. Fur-
ther important strengths include the well-characterized 
cohort of pregnant women with an accurate gestation 
period and multiple available ultrasound measurements. 
Additionally, the participants were recruited over a full 
calendar year with multiple timepoints of data collection. 
Consequently, we were able to recruit and follow up most 
of the study participants who met the inclusion criteria.

Limitation of the study
The limitations of the study included the lack of infor-
mation on the family history of chronic diseases, which 
might have affected the metabolic risks among the ado-
lescents. Also, this study included children who were pri-
marily born in facilities, which might have influenced its 
generalizability. Additionally, we did not collect samples 
from the children to evaluate calcitonin or osteocalcin 
markers, which may be associated with fetal femur bone 
growth. Future studies explaining the underlying path-
ways by which fetal femur bone length influences glucose 
metabolism in adulthood are recommended.

Conclusion
In conclusion, a shorter fetal femur length during mid-
pregnancy may be associated with elevated prediabetic 
biomarkers among Bangladeshi adolescents. This study 
provides evidence indicating that reduced fetal femur 
length may increase the risk of prediabetes in adoles-
cence. Adolescence is a crucial stage for the early onset of 
chronic diseases. Therefore, further research is impera-
tive to explain how fetal growth restriction, irrespective 
of lifestyle modification, may contribute to the develop-
ment of metabolic disorders in adulthood. Moreover, it 
is important to educate prospective parents about pre-
pregnancy nutrition and practices that promote healthy 
fetal development to reduce the incidence of fetal growth 
restriction and low birth weight.
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