RESEARCH

Open Access

Use of wild edible and nutraceutical plants in Raya-Azebo District of Tigray Region, northern Ethiopia

Mirutse Giday^{1*} and Tilahun Teklehaymanot¹

Abstract

Background Although there is a wide use of wild edible plants (WEPs) in Ethiopia, very little work has so far been done, particularly, in the Tigray Region, northern Ethiopia, to properly document the associated knowledge. The purpose of this study was, therefore, to document knowledge and analyze data related to the use of wild edible and nutraceutical plants in Raya-Azebo District of Tigray Region. The district was prioritized for the study to avoid the further loss of local knowledge and discontinuation of the associated practices because of the depletion of wild edible plants in the area mainly due to agricultural expansion and largely by private investors.

Methods A cross-sectional ethnobotanical study was carried out in the study District to collect data through individual interviews held with purposively selected informants, observation, market surveys, and ranking exercises. Descriptive and inferential statistical methods were employed to analyze and summarize the data using Statistical Package for Social Sciences (SPSS) version 16.

Results The study documented 59 WEPs, the majority of which (57.63%) were sought for their fruits. Most of the WEPs (49 species) were consumed in the autumn, locally called qewei, which includes the months of September, October, and November. *Ziziphus spina-christi* L. Desf., *Balanites aegyptiaca* (L.) Del. and *Opuntia ficus-indica* (L.) Miller were the most preferred WEPs. Both interviews and local market surveys revealed the marketability of *Opuntia ficus-indica, Ziziphus spina-christi, Ficus vasta* Forssk., *Ficus sur* Forssk., and *Balanites aegyptiaca*. Of the total WEPs, 21 were reported to have medicinal (nutraceutical) values, of which *Balanites aegyptiaca* and *Acacia etbaica* scored the highest rank order priority (ROP) values for their uses to treat anthrax and skin infections, respectively.

Conclusions The current investigation demonstrated the wide use of WEPs in the district. In future nutritional composition analysis studies, priority should be given to the most popular WEPs, and nutraceutical plants with the highest ROP values.

Keywords Wild edible plants, Nutraceutical plants, Raya-Azebo, Tigray, Ethiopia

Background

Wild edible plants (WEPs) play an important role in the livelihood of many rural communities across the world, particularly, in providing reliable alternatives when the production of cultivated crops decreases or fails [1-5]. Wild edible plants serve as source of vitamins, carbohydrates, proteins, fibers and minerals and are particularly rich in vitamins A and C, zinc, iron, calcium, iodine, thiamine, riboflavin, niacin, and folacin. Moreover, WEPs are

*Correspondence: Mirutse Giday mirutse.giday@aau.edu.et ¹ Aklilu Lemma Institute of Pathobiology, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia

© The Author(s) 2023. **Open Access** This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

valuable for the development of new food crops through domestication and in serving as a genetic resource pool needed to improve the productivity of cultivars [5, 6]. They provide a good source of cash income for local communities in different parts of the world [7–9]. There is also a long history of use of WEPs by communities in different parts of the world as medicines (nutraceuticals) to manage various ailments [10, 11], and reports show that such plants are still serving as an important source of medicines in the prevention and treatment of diseases [12, 13].

There is a wide use of WEPs in Ethiopia as supplement foods as revealed by different ethnobotanical studies [14– 24]. Furthermore, studies show the utilization of WEPs in the country as nutraceuticals [25-27]. However, very little work that covered very limited geographical area has so far been done in Tigray Region, northern Ethiopia, to document local knowledge related to the use of WEPs [28–31]. A study conducted in Indaselassie-Shire District (North Western Tigray Zone) documented eight wild and semi-wild edible plants [29]. A survey carried out in Laelay Maichew and Tahtay Maichew districts (Central Tigray Zone) reported the use of three WEPs [28]. A study conducted in Raya-Alamata district (Southern Tigray Zone) revealed the use of 37 wild and semi-wild edible plants [30]. Another study carried out in Kilte Awlaelo district (Eastern Tigray Zone) recorded the use of 30 wild and semi-wild edible plants [31]. To the knowledge of the authors, there is no report of previous conduct of ethnobotanical study in Raya-Azebo district that aimed at documenting the use of WEPs. The purpose of this study was, therefore, to document and analyze ethnobotanical data mainly related to the use of wild edible and nutraceutical plants in Raya-Azebo District in the Southern Zone of the Tigray Region, northern Ethiopia. Raya-Azebo District was prioritized for the study because of an ongoing decimation of WEPs in the area due to destruction of their natural habitats attributed to mainly expansion of agriculture [32] and largely by private investors, which in the absence of proper and immediate documentation could ultimately bring about the perpetual loss of the local knowledge and practices associated with the use of WEPs.

Methods

The study area

Raya-Azebo District belongs to the Southern zone of the Tigray Region in northern Ethiopia and is located at latitudes between 12° 15'and 13° 41' North and longitudes between 38° 59'and 39° 54' East [33]. Raya-Azebo covers an area of about176, 210 ha [34]. The district is divided into 18 rural and two urban tabiyas (sub-districts) [35], and has a human population of 135, 870, of which 67,687 are men and 68,183 are women [36]. Ninety percent of the total area in the district is midland (1500–2300 m above sea level) while 10% is lowland (<1500 m above sea level) [34]. The district gets its main rainfall between July and September and light rainfall between February and April. Agriculture is the main economic stay in the district. Sorghum and maize are the crops that are widely cultivated in the area. Malaria is the leading disease in the district causing high morbidity (unpublished data, Raya-Azebo District Health Office, 2015).

Selection of study areas and informants

For the study, nine tabiyas that were relatively considered to have better vegetation cover and availability of knowledgeable individuals concerning use of WEPs were purposively sampled out of the total 18 rural tabiyas of the district with the help of experts at Raya-Azebo District Agriculture and Natural Resources Conservation Office. The selected tabiyas included Ebo, Erba, Genete, Hade Alga, Hadis Kigni, Hawelti, Mechare, Tsigea and Ulaga (Fig. 1). For the interview survey, a total of 180 informants constituting 158 men and 22 women aged 20 years and above were involved; 20 informants from each of the nine sampled tabiyas that were considered the most knowledgeable with regard to use of wild edible and nutraceutical plants were purposively identified and sampled with the help of tabiya administrators and elders.

Methods of data collection

A cross-sectional survey was conducted in the study District between July 2017 and October 2018 and ethnobotanical data were collected through individual interviews that were held with the purposively selected informants using a pre-tested list of interview items (semi-structured questionnaire), field observation and market surveys following the methods stated in Martin [37]. Attempt was made to make the data collection process valid and reliable through the strict of use of pre-tested. Data collected mainly included local name of each claimed edible plant, edible part, maturity level at the time of collection, month of harvest, processing method, taste, habitat, availability status and potential threats. Additional data were collected concerning the medicinal (nutraceutical) value of each claimed edible plant. Voucher specimens were collected for most of the claimed WEPs plants and identified, and duplicates were deposited at the National Herbarium of the Addis Ababa University (AAU) and the mini-herbarium of the Aklilu Lemma Institute of Pathobiology (ALIPB), AAU.

Data analysis

Microsoft Excel version 2016 was employed to enter and organize the data. Descriptive statistical methods

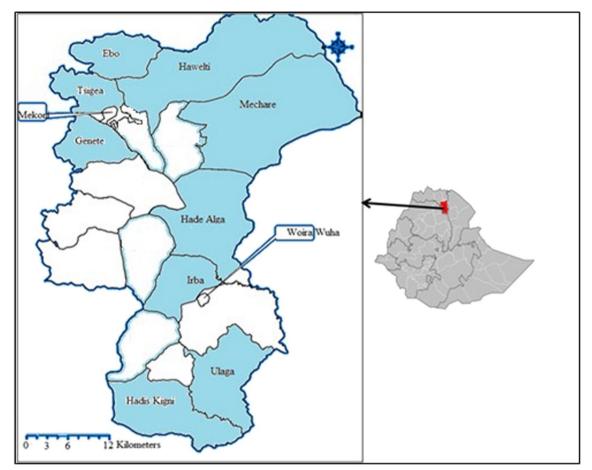


Fig. 1 Map of Raya-Azebo District in Tigray Region of Ethiopia with selected study tabiyas in blue color

were used to analyze and summarize the data using Statistical Package for Social Sciences (SPSS) version 16. Comparison of mean differences between informant groups was made using one-way analysis of variance (ANOVA) and differences in means with *p*-value ≤ 0.05 were considered statistically significant. Mean values are presented as mean plus or minus standard error of the mean (mean \pm SEM). Preference ranking exercises were performed on WEPs of the highest informant consensus by involving individuals randomly sampled from the list of informants who participated in interviews following the method of Martin [37]. Preference ranking exercises were additionally conducted by the same randomly sampled individuals to identify main factors responsible for the depletion of WEPs. The relative healing potential of each nutraceutical plant cited by three or more informants for its use to manage a specific ailment was estimated by using an index called Fidelity Level (FL) with the formula $FL = Ip/Iu \times 100$, where $Ip/Iu \times 100$, where Ip is the number of informants who reported the utilization of the nutraceutical

plant against a specific ailment and Iu is the total number of informants who mentioned the use of same plant against any ailment [38]. However, plants with similar FL values but known to different numbers of informants may differ in their healing potential. To differentiate the healing potential of plants of similar FL values, there is a need to calculate a correlation index known as relative popularity level (RPL) and determine rank order priority (ROP) value by multiplying FL value by RPL value [38]. RPL values range between 0 and 1. Plants are categorized into "popular" (RPL=1) and "unpopular" (RPL < 1) groups. Popular plant are those cited by half or more of the highest number of informants (29 in the current study) who cited a given plant against any ailment. Accordingly, a medicinal plant cited by 15 or more of informants for its use against any ailment in the study District was considered popular and was assigned with an RPL value of 1, whereas a medicinal plant that was mentioned by less than 15 informants for its use against any ailment was considered unpopular and was assigned with RPL value less than 1 and was

determined by dividing the total number of informants who mentioned the given plant against any ailment by 15.

Results

Diversity of wild edible plants

The study documented a total of 59 WEPs, of which 51 (belonging to 33 families and 40 genera) were, at least, identified to a genus level (44 to a species level and seven to genus level). The remaining eight species were only known by their Tigrigna names, as informants were not willing to travel to far distances to collect their specimens for identification purpose (Table 1). The families Asclepiadaceae, Fabaceae and Tiliaceae were represented by four species each, and the families Brassicaceae and Moraceae were represented by three species each. The families Anacardiaceae, Boraginaceae, Flacourtiaceae, Polygonaceae, Rhamnaceae and Rosaceae were represented by two species each, while the remaining 21 species were represented by a single species each. Of all the 40 genera recorded, the genus Grewia contributed four species, the genera Acacia and Ficus contributed three species each, and the genera Rhus, Cordia, Brassica, *Dovyalis* and *Rumex* contributed two species each, while the remaining 31 genera were represented by one species each. Of the plants that were determined, at least, to a genus level, 18(35%) were shrubs, 18 (35%) were herbs and 15 (29%) were trees.

Part consumed, taste, level of maturity at consumption and storage

The majority (57.63%) of the WEPs in the study area were sought for their fruits, and few were harvested for their leaves (13.60%) and roots (8.5%) (Fig. 2). The edible fruits were claimed to have different tastes (sweet, sour, bitter) with the great majority having a sweet taste. The fruits were consumed when they got ripe, mostly characterized by color change from green to yellow, dark, purple or red. However, leafy vegetables were claimed to be consumed at their juvenile stage. There was little practice of storing WEPs in the area and thus the great majority of them were reported to be consumed immediately after harvesting while they were fresh.

Preparation of edible parts and conditions of consumption

Most fruits were consumed raw by peeling off their skin (exocarp) and then chewing and swallowing with occasional spitting of seeds or stones (Table 1). On the other hand, the majority of the leafy vegetables were processed mainly by chopping, boiling and squeezing, and most frequently consumed with injera (pan-cake-like flatbread made of *Eragrostis tef* (Zucc.) Trotter).

The great majority of the wild edible plants in the study area were frequently harvested and consumed as supplementary/complementary foods at time of plenty or seasonal shortage of staple food. However, some (Amaranthus hybridus L., Capsella bursa-pastoris (L.) Medic., Cleome gynandra L., Commiphora Africana (A.Rich.) Engl., Cynanchum abyssinicum Decne., Echidnopsis sp., Huernia macrocarpa (A.Rich.) Sprenger, Eragrostis sp., Dobera glabra (Forssk.) Pair., Pentarrbinum insipidum E.Mey and Rumex nervosus Vahl) were only consumed at times of famine as reported by informants. Fruits were predominantly consumed by children, especially when herding animals in places that were far away from homesteads. On the other hand, leafy vegetables were usually harvested by women and prepared at home for household consumption.

Season availability of wild edible plants

Analysis of data shows that the highest number of WEPs (49 species) in the study district were available for harvest in the autumn season (locally known as gewei), followed by those (37 species) that were harvested in the summer season (locally known as kiremti). The autumn season, which includes the months of September, October and November, comes after the long rainy summer season that includes the months of June, July and August. Twenty-six WEPs were consumed in the winter season (which includes the months of December, January and February), and 25 plants were consumed in the spring season which includes the months of March, April and May (Table 2). In terms of months, the highest number of WEPs was claimed to be consumed in September (43 species), followed by those consumed August (37 species), July (33 species), October (31 species) and November (31species). Some were consumed December (26 species), April (24 species), May (24 species), March (23 species), January (21 species), February (19 species) and June (18 species). The species Acacia abyssinica Hochst. ex Benth., Acacia seyal Del., Balanites aegyptiaca, Carissa spinarum L., Cordia monoica Roxb., Cynanchum abyssinicum Decne., Grewia sp., Grewia villosa Willd., Huernia macrocarpa, Olea europaea subsp. cuspidata (Wall. ex G.Don) cif. and Rhus natalensis Krauss, Smilax aspera L., and a plant locally known as katoita were reported to be available for harvest throughout the year.

Popular wild edible plants

Based on the number of informant citations, *Ziziphus spina-christi, Balanites aegyptiaca* and *Opuntia ficus-indica* were found to be the most popular WEPs in the district, cited by 142, 134 and 121 informants, respectively (Table 1). Other WEPs that were found popular include *Carissa spinarum, Cynanchum abyssinicum*,

Table 1 Wild edible plants consumed in Raya-Azebo District

Plant species name	Family name	Growth habit	Plant local name	Part consumed	Mode of preparation and consumption	No. of informant reports	Voucher no.
<i>Acacia abyssinica</i> Hochst. ex Benth	Fabaceae	Tree	Chea	Gum	Gum chewed and juice swal- lowed	1	MT-034
<i>Acacia etbaica</i> Schweinf	Fabaceae	Tree	Kariwora	Gum	Gum chewed and juice swal- lowed	2	MT-076
<i>Acacia seyal</i> Del	Fabaceae	Tree	Wacho	Gum	Gum chewed and juice swal- lowed	1	MT-003
Amaranthus hybri- dus L	Amaranthaceae	Herb	Hamlitilian	Seed	Seeds ground and eaten after baking	10	MT-017
				Leaf	Leaves chopped, boiled and eaten after decanting liq- uid and adding salt, paper, and pow- dered linseed		
Balanites aegyptiaca (L.) Del	Balanitaceae	Tree	Bedano	Fruit	Fruit eaten with or without the skin	134	MT-146
<i>Brassica nigra</i> (L.) Koch	Brassicaceae	Herb	Hamlisenafich	Leaf	Leaves boiled and eaten after decanting liq- uid and adding salt, pepper and pow- dered linseed	1	MT-019
Brassica rapa L	Brassicaceae	Herb	Hamli	Leaf	Leaves boiled and eaten with injera after decanting liquid and adding pepper and salt	1	MT-021
Capsella bursa- pastoris (L.) Medic	Brassicaceae	Herb	Hamliuf	Leaf	Leaves boiled and eaten with injera after decanting water	1	MT-015
Carissa spinarum L	Apocynaceae	Shrub	Agam	Fruit	Fruit eaten with or without the skin	96	MT-107, MT-157
<i>Celtis africana</i> Burm. f	Ulmaceae	Tree	Tselim om	Fruit	Fruit eaten	1	MT-008
Cleome gynandra L	Capparaceae	Herb	Abetiye	Leaf	Leaves boiled and eaten with injera after decanting liquid and adding butter and pepper	42	MT-047
<i>Commelina</i> sp.	Commelinaceae	Herb	Meanqor	Leaf	Eaten it is with injera	1	MT-198
Commiphora afri- cana (A. Rich.) Engl	Burseraceae	Tree	Anqua	Root	Root chewed and juice swal- lowed	2	MT-020
<i>Cordia africana</i> Lam	Boraginaceae	Tree	Awhi	Fruit	Fruit chewed and swallowed without the stone	1	MT-069

Plant species name	Family name	Growth habit	Plant local name	Part consumed	Mode of preparation and consumption	No. of informant reports	Voucher no.
<i>Cordia monoica</i> Roxb	Boraginaceae	Shrub	Maitero	Fruit	Fruit chewed and swallowed without seed	25	MT-142
Cynanchum abys- sinicum Decne	Asclepiadaceae	Herb	Asemo	Root	Root chewed and juice swal- lowed	81	MT-133, MT-134
			Hamliasemo	Leaf	Leaves chopped and eaten with injera after decanting liquid and adding pepper and pow- dered linseed		
Cyphostemma sp.	Vitaceae	Herb	Tiwlahmi	Fruit	Fruit eaten	2	MT-038
Diospyros mespili- formis Hochst. ex A. DC	Ebenaceae	Tree	Yalue	Fruit	Fruit eaten	9	MT-005
<i>Dobera glabra</i> (Forssk.) Pair	Salvadoraceae	Shrub	Garsa	Fruit	Fruits boiled and eaten	10	MT-018
				Leaf	Boiled leaves eaten after decanting liquid and adding salt and pepper		
				Root	Root chewed and juice swal- lowed		
<i>Dovyalis abyssinica</i> (A.Rich.) Warb	Flacourtiaceae	Tree	Mengolhats	Fruit	Fruit eaten with- out the skin	10	MT-024
<i>Dovyalis verrucosa</i> (Hochst.) Warb	Flacourtiaceae	Shrub	Tiumtegna	Fruit	Fruit eaten	4	MT-006
Echidnopsis sp.	Asclepiadaceae	Herb	Dula	Leaf	Leaves eaten	6	MT-131
				Stem	Stem chewed and juice swal- lowed		
				Fruit	Fruit eaten		
Eragrostis sp.	Poaceae	Herb	Taftafo	Seed	Ground seeds are eaten after baking	2	MT-108
Ficus carica L	Moraceae	Tree	Beles	Fruit	Fruit eaten after peeling off the skin	1	MT-028
<i>Ficus sur</i> Forssk	Moraceae	Tree	Shamfa	Fruit	Fruit eaten after rubbing off the inside part and peeling off the skin	20	MT-027
<i>Ficus vasta</i> Forssk	Moraceae	Tree	Daero	Fruit	Fruit eaten after rubbing off the inside part and peeling off the skin	6	MT-030
Grewia bicolor Juss	Tiliaceae	Shrub	Habile	Fruit	Fruit chewed after removing skin and juice swal- lowed	3	MT-013
Grewia mollis A.Juss	Tiliaceae	Shrub	Reway	Fruit	Fruit chewed and swallowed after spitting seeds	12	MT-081

Plant species name	Family name	Growth habit	Plant local name	Part consumed	Mode of preparation and consumption	No. of informant reports	Voucher no.
Grewia sp.	Tiliaceae	Shrub	Dianka	Fruit	Fruit chewed and swallowed after spitting seeds	69	MT-077, MT-138
<i>Grewia villosa</i> Willd	Tiliaceae	Shrub	Agewde	Fruit	Fruit chewed, juice swallowed and seeds spit	45	MT-054, MT-079
<i>Huernia macrocarpa</i> (A. Rich.) Sprenger	Asclepiadaceae	Herb (succulent)	Hamashiro	Aboveground	Leaves eaten after adding salt	29	MT-014
Myrsine africana L	Myrsinaceae	Shrub	Qachemo	Fruit	As it is	1	MT-007
<i>Olea europaea</i> subsp. <i>cuspidata</i> (Wall. ex G.Don) cif	Oleaceae	Tree	Awlie	Stem (bark)	Bark pounded and is added to tej (local honey drink) for good flavor	2	MT-174
				Leaf	Leaves boiled in water and tea drunk		
Opuntia ficus-indica (L.) Miller	Cactaceae	Shrub	Qolahri/beles	Fruit	Fruit eaten after peeling off the skin	121	MT-009
<i>Oxalis</i> sp.	Oxalidaceae	Herb	Chew chewa (chew mirakuit)	Above ground	Aboveground eaten	5	MT-041
<i>Pappea capensis</i> Eckl. & Zeyh	Sapindaceae	Tree	Tantaso	Fruit	Fruit eaten with- out seed	2	MT-051
Pelargonium sp.	Geraniaceae	Herb	Chewchewa	Leaf	Leaves eaten	1	MT-088
Pentarrhinum insipi- dum E.Mey	Asclepiadaceae	Herb	Gumgumo	Fruit	Fruit chewed after peeling off skin and juice swallowed	8	MT-121
<i>Rhus glutinosa</i> A.Rich	Anacardiaceae	Shrub	Tetaelo	Fruit	Fruit eaten	4	MT-023
Rhus natalensis Krauss	Anacardiaceae	Shrub	Atami	Fruit	Fruit chewed after peeling off skin and juice swallowed	20	MT-037, MT-097
<i>Rosa abyssinica</i> Lindley	Rosaceae	Shrub	Qaqa (chaga)	Fruit	Fruit chewed after peeling off skin and juice swallowed with- out seeds	4	MT-026
<i>Rubus steudneri</i> Schweinf	Rosaceae	Shrub	Mengolel	Fruit	Fruit eaten	4	MT-025
<i>Rumex abyssinicus</i> Jacq	Polygonaceae	Herb	Meqmoqo	Root	Root boiled in water and tea drunk	3	MT-191
<i>Rumex nervosus</i> Vahl	Polygonaceae	Shrub	Hahot	Leaf	Leaves eaten	7	MT-115, MT-162
				Stem	Stem chewed and juice swal- lowed		
S <i>ageretia</i> <i>thea</i> (Osbeck) M.C.Johnston	Rhamnaceae	Shrub	Agamqinchil	Fruit	Fruit eaten	9	MT-106, MT-170
Smilax aspera L	Similacaceae	Herb	Qalawadi (butign)	Fruit	Fruit eaten	1	MT-012
Solanum nigrum L	Solanaceae	Herb	Alamo	Fruit	Used as ingredi- ent to make wot (stew) to be eaten with injera	2	MT-123

with injera

Plant species name	Family name	Growth habit	Plant local name	Part consumed	Mode of preparation and consumption	No. of informant reports	Voucher no.
Tamarindus indica L	Fabaceae	Tree	Humer (roqa)	Fruit	Fruit eaten	2	MT-011
<i>Thymus serrulatus</i> Hochst. ex Benth	Lamiaceae	Herb	Toshne	Leaf	Leaf boiled in water and tea drunk	1	MT-016
Ximenia ameri- cana L	Olacaceae	Shrub	Muleo	Fruit	Fruit eaten	65	MT-004
Ziziphus spina- christi (L.) Desf	Rhamnaceae	Shrub	Qunqura	Fruit	Skin chewed and swallowed without stone	142	MT-002
-			Beso harestay	Root	Root eaten	3	
-			Mai atsgbi	Root	Root eaten after removing bark	11	
-			Baroda	Root	Root eaten after removing bark	1	
-			Katoita	Fruit	Fruit eaten with- out stone	1	
-			Kerbesha	Fruit	Fruit eaten	1	
			Mugo mugoi	Fruit	Fruit eaten	1	
-			Tirumbule	Fruit	Fruit eaten	1	
-			Tirur	Fruit	Fruits ground and eaten after baking	1	

Number of species in percent

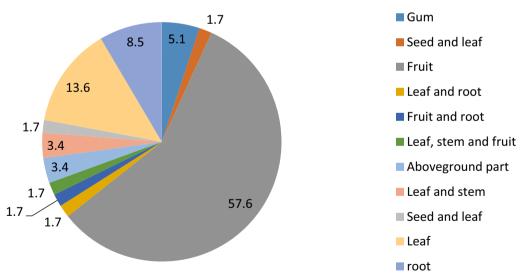


Fig. 2 Proportions of parts of wild edible plants consumed in Raya-Azebo District

Grewia sp., Ximenia Americana L., Grewia villosa, Cleome gynandra, Huernia macrocarpa, Cordia monoica, Ficus sur and Rhus natalensis, reported by 97, 81, 68, 65, 45, 42, 29, 25, 20 and 20 informants, respectively (Table 1). A simple preference ranking exercise conducted on seven WEPs of the highest informant citations revealed *Opuntia ficus-indica*, *Ziziphus spinachristi* and *Balanites aegyptiaca* as the most preferred plants in the district (Table 3).

No.	Scientific name/local name		nmer emti)		Aut (qev	umn vei)			ıter gay)		Spr (tsic		
		June	July	August	September	October	November	December	January	February	March	April	May
1	Acacia abyssinica												
2	Acacia etbaica												
3	Acacia seyal												
4	Amaranthus hybridus												
5	Balanites aegyptiaca												
6	Brassica nigra												
7	Brassica rapa												
8	Capsella bursa-pastoris												
9	Carissa spinarum												
10	Celtis africana												
11	Cleome gynandra												
12	<i>Commelina</i> sp.												
13	Commiphora africana												
14	Cordia africana												
15	Cordia monoica												
16	Cynanchum abyssinicum												
17	<i>Cyphostemma</i> sp.												
18	Diospyros mespiliformis												
19	Dobera glabra												
20	Dovyalis abyssinica												
21	Dovyalis verrucosa												
22	Echidnopsis sp.												
23	Eragrostis sp.												
24	Ficus carica												
25	Ficus sur												
26	Ficus vasta												
27	Grewia bicolor												
28	Grewia mollis												
29	Grewia sp.												
30	Grewia villosa												
31	Huernia macrocarpa												
32	Myrsine africana												
33	Olea europaea subsp. Cuspidata												
34	Opuntia ficus-indica												
35	Oxalis sp.												
36	Pappea capensis												

Table 2 Seasons/months in which wild edible plants were harvested and consumed in Raya-Azebo District

No.	Scientific name/local name		nmer			umn		Wir			Spr (toi	ing tia)	
		(KII	(kiremti)		(qewei)		(hagay)			(tsidia)			
				it	September	er	November	December	ry	ary			
		June	Ŋ	August	ptei	October	ven	cen	January	February	March	April	May
		Ju	July	٩I	Se	ŏ	ž	De	Ja	Fe	Μ	Υİ	Σ
37	Pelargonium sp.												
38	Pentarrhinum insipidum												
39	Rhus glutinosa												
40	Rhus natalensis												
41	Rosa abyssinica												
42	Rubus steudneri												
43	Rumex abyssinicus												
44	Rumex nervosus												
45	Sageretia thea												
46	Smilax aspera												
47	Solanum nigrum												
48	Tamarindus indica												
49	Thymus serrulatus												
50	Ximenia americana												
51	Ziziphus spina-christi												
52	Baroda (local name)												
53	beso harestay (local name)												
54	katoita (local name)												
55	kerbesha (local name)												
56	mai atsgbi (local name)												
57	mugo mugoi (local name)												
58	tirumbule (local name)												
59	tirur (local name)												

Shaded areas show months that wild edible fruits were harvested and consumed

Plant name	Infor	Informants										Rank
	A	В	С	D	E	F	G	Н	I	J		
Opuntia ficus-indica	7	7	7	7	7	7	7	7	7	7	70	1st
Ziziphus spina-christi	6	6	5	5	5	6	6	6	6	5	56	2nd
Balanites aegyptiaca	5	4	4	6	6	5	5	5	4	6	50	3rd
Carissa spinarum	4	5	6	4	3	3	4	4	5	4	42	4th
Ximenia americana	3	3	3	2	4	4	1	3	3	3	29	5th
Grewia sp.	2	2	2	3	2	2	3	2	2	2	22	6th
Cynanchum abyssinicum	1	1	1	1	1	1	2	1	1	1	11	7th

Table 3 Results of preference ranking exercise conducted on seven most cited wild edible plants in Raya-Azebo District

Marketability

Interviews data showed that *Carissa spinarum*, *Sageretia thea* (Osbeck) M.C. Johnston, *Grewia villosa, Balanites aegyptiaca, Ficus vasta, Dovyalis abyssinica* (A.Rich.) Warb., *Ximenia americana, Opuntia ficus-indica, Ziziphus spina-christi, Ficus sur* and *Diospyros mespiliformis* Hochst. ex. A.DC. were sold at local markets for their food values. Whereas, market surveys witnessed the marketability of only four of the aforementioned plants that included *Opuntia ficus-indica, Ziziphus spina-christi, Ficus sur* and *Balanites aegyptiaca*.

Habitat, availability and threats

Most of the WEPs consumed in the study area were harvested from farmlands and other disturbed habitats, roadsides, and woodlands. Very few were harvested from forested area. Nearly half of the reported WEPs were reported to have scarce occurrence in the area with the population of each plant continuing to decline from time to time. However, as interview reports indicated, very little effort has so far been made in the area to spare them from further devastation. The frequently mentioned threats of WEPs in the study area included agricultural expansion, recurrent drought and cutting of trees (for firewood purpose, house construction, making of farm tools, household utensils and fences). Ranking exercise conducted by informants revealed agricultural expansion and cutting of trees for firewood making as the main factors responsible for the depletion of WEPs in the district (Table 4). Of the claimed WEPs, Ficus sur, Rhus natalensis, Ximenia americana and Ziziphus spina-christi were reported to have rare occurrences in the study area.

Comparison of knowledge on wild edible plants among different social groups

Analysis of data collected revealed that there was a significant difference (p < 0.05) in the mean number of WEPs reported by literate and illiterate informants; the mean number WEPs reported by literate and illiterate informants were 6.69 ± 0.37 and 5.45 ± 0.22 , respectively. However, there was no significant difference in the number of WEPs reported by male (6.08 ± 0.23) and female (4.90 ± 0.43) informants, and those reported by informants above the age of 40 years and above (5.94 ± 0.23) and those who were below the age of 40 years (5.94 ± 0.52).

Wild edible plants claimed to have medicinal values

Of the total recorded WEPs in the study district, 21 were reported to also have medicinal (nutraceutical) uses (Table 5). Of these, the plants *Balanites aegyptiaca* and *Acacia etbaica* Schweinf. had the highest informant agreement, reported by 17 and seven informants for their uses to manage anthrax and skin infections, respectively. *Balanites aegyptiaca* and *Acacia etbaica* also scored the highest rank order priority (ROP) values. *Balanites aegyptiaca* scored RPO value of 58.6 for its use to treat anthrax, and *Acacia etbaica* scored an RPO value of 43.8 for its use to manage skin infections (Table 6).

Discussion

Results of the current study demonstrates that there is a wide use of wild edible as supplementary/complementary foods and nutraceuticals in Raya-Azebo District of the Tigray Region as revealed by the high diversity of the reported plant species. Relatively higher number of WEPs (59 species) was recorded from the study District as compared with those reported from other districts of the same region by Girmay et al. in Asgede Tsimbla, Tahtay Koraro and Medebay Zana districts (41 spp.) [39], Adhena in Raya Alamata District (37 spp.) [30], and Habtu in Wukro Kilte Awulaelo District (30 spp.) [31]. The wide use of WEPs in the district could be attributed to their good nutritional value as well as to the oftenpoor harvest of cultivated crops in the district mainly due to recurrent drought occurring in that part of the country [40, 41]. Based on literature survey, all the WEPs

Table 4 Results of preference ranking exercise to identify the main causes for the depletion of wild edible plants in Raya-Azebo District

Factor	Info	Informants									Total score	Rank
	A	В	с	D	Е	F	G	н	I	J		
Agricultural expansion	7	6	5	7	7	7	6	7	6	7	65	1
Recurrent drought	1	4	4	1	1	1	2	1	1	1	17	7
Use of trees as firewood	6	7	7	5	5	6	7	6	7	6	62	2
Use of trees for house construction	5	1	3	6	6	5	5	5	4	5	45	3
Tree-cutting for farm tools	2	2	2	3	2	4	3	3	3	2	26	5
Tree-cutting for house utensils	3	3	1	2	4	2	1	2	2	3	23	6
Tree-cutting for fencing	4	5	6	4	3	3	4	4	5	4	42	4

Scientific name/local Local disease name English disease name Part used Method of preparation Administration route name Qusli Skin wound Acacia abyssinica Leaf Pound leaves and dress Dermal (local) wound with the paste Acacia etbaica Hebet Skin wound Pound leaves and dress Dermal (local) Leaf on the swollen part Skin wound Leaf Chew part and apply Dermal (local) Negersa on the swollen part Shihur eid Itchy skin of hands Dermal (local) Leaf Chew and apply juice on itching skin Qusli Skin wound Leaf Mix leaves of plant Dermal (local) with that of Cadia purpurea, grind, add sour milk & apply on wound Anger Uvulitis Leaf Pound part, and apply Dermal on head paste on head after shavina Boteta Skin wound Leaf Pound leaves, and smear Dermal (local) paste on the affected area Ousli Skin wound Leaf Roast leaves on hot Dermal (local) metal plate, crush, make paste in butter and apply on wound Qusli Skin wound Rub leaves and tie them Dermal (local) Leaf on the wound Wound on the neck Pound, add water, filter Balanites aegyptiaca Hibtet kisad Root Nasal & sniff Pound, filter and sniff Megerem Anthrax Root Nasal small amount of the filtrate Anthrax Pound, filter and sniff Megerem Root Nasal small amount of the filtrate Anthrax Root Pound, add water, filter Nasal Megerem and sniff Megerem Anthrax Leaf Pound, dilute it in water, Nasal filter and sniff Megerem Anthrax Stem bark Pound part, and sniff Nasal Pound part, filter it, Anthrax Stem (bark) Nasal Megerem and add droplets into nostrils Qusli Skin wound Root Dry part, grind, add Dermal local on wound butter and smear paste on the wound Megerem Anthrax Root Pound part, mix in butter, Dermal on affected part heat it and smear paste on affected part Habi Taeniasis Leaf Pound part, sock it Oral in water overnight, filter and drink one cup Anthrax Stem bark Pound stem bark Megerem Nasal together with root of Tribulus terrestris and apply juice via the nostrils Peel of the skin and eat Himam riesi, kebdi Head ache, stomach Root Oral qurtset ache the flesh and spit the seeds

Table 5 Wild edible plants reported to have medicinal (nutraceutical) values in Raya-Azebo District

Scientific name/local name	Local disease name	English disease name	Part used	Method of preparation	Administration route
	Megerem	Anthrax	Root	Pound part and apply few drops of the super- natant into the left nostril	Nasal
	Megerem	Anthrax	Stem (bark)	Pound bark, mix in water and take two cups of the supernatant orally or some drops nasally before meal	Oral, nasal
	Megerem	Anthrax	Root	Pound root, mix it in water, filter and drink filtrate	Oral
	Megerem	Anthrax	Stem (bark)	Pound part, mix it in water, filter and sniff filtrate via the left nostril	Nasal
	Megerem	Anthrax	Bark	Chop the internal part of the bark, mix it in small amount of water and drink; also apply some drops via the nos- trils	Oral, nasal
	Megerem	Anthrax	Stem (bark)	Pound the bark, mix it in water, filter and apply little via mouth and nose	Oral, nasal
	Himam kebdi	Stomach problem	Fruit	Chew and swallow juice	Oral
	Himam kebdi	Abdominal problem	Fruit	Eat flesh and spit seeds	Oral
	Hibet	Swelling on the skin	Stem (bark)	Pound part after add- ing a liter of water, filter and drink a cup of the filtrate	Oral
	Uf shewa	Hepatitis	Stem (bark)	Pound part, mix it in water and drink juice	Oral
	Qurtset kebdi	Abdominal cramp	Fruit	Peel off the skin and eat flesh without the seeds	Oral
	Himam kebdi	Abdominal problem	Fruit	Peel off skin sock it in water filter and drink	Oral
	Megerem	Anthrax	Stem (bark)	Pound bark, add water and mix and apply few drops via nostrils	Nasal
	Teqmat	Diarrhea	Fruit	Remove skin, sock overnight in water, mix and drink	Oral
	Qurtset kebdi	Abdominal cramp	Root	Chew root and swallow the juice	Oral
	Megerem	Anthrax	Root	Pound, add little water, filter and sniff	Nasal
	Megerem	Anthrax	Root	Pound, add water, filter and sniff	Nasal
Carissa spinarum	Holeta (aso)	Malaria	Root	Boil it in water and drink and also sniff	Oral-nasal
	Michi	Febrile illness	Root	Boil part in water with root of <i>Withania</i> <i>somnifera</i> and leaves of bahir zaf and fumigate oneself	Nasal
	Michi	Febrile illness	Root	Boil part in water together with leaves of <i>Eucalyptus globulus</i> and <i>Ehretia cymosa</i> and fumigate oneself	Nasal

Scientific name/local name	Local disease name	English disease name	Part used	Method of preparation	Administration route
	Shegri	Crippling of legs	Root	Cut part and sock it in cold water for three days and wash body with it	Dermal
	Zebenegna	Mental illness	Root	Add part with roots of Withania somnifera, Allium sativum, Lepidium sativum, Verbascum sinaiticum and Capparis tomentosa, boil them in water and fumigate yourself with vapor	Nasal
	Ganen	Evil spirit	Root	Boil root of Carrisa spinarum in water with roots of Bersama abyssinica and Justicia schimperiana and fumi- gate oneself with steam	Nasal
	Egri liasir	Crippling of legs	Root	Sock root with roots of <i>Clerodendrum myricoides</i> for seven days and wash body with the supernatant	Dermal
	Holeta (aso)	Malaria	Root	Boil root in water and fumigate yourself with stem	Nasal
	Ide seb	Mental illness	Root	Pound part with fruit of Citrus aurantifolia, root of Verbena officinalis, root of Solanum hastifo- lium, root of Capparis tomentosa and root of Corchorus sp., sock in water for up to 7 days and wash with it	Dermal
	Ede seb	Mental illness	Root	Mix part with root of Justicia schimperiana and leaf or root of Rumex nervosus, add a liter of water and pound, and add juice of Citrus lemon, sugar and Nigella sativa and drink juice	Oral
	Michi	Unidentified febrile illness	Root	Boil root with that of Withania somnifera and fumigate yourself with steam	Nasal
	Qusli	Skin wound	Leaf	Pound leaves and smear paste on the wound	Dermal (local)
	Hibet	Swelling on the skin	Root	Dry stem bark, grind, mix in honey and dress swell- ing with paste	Dermal (local)
Commiphora africana	Himam kebdi	Abdominal problem	Resin	Chew resin and swallow juice	Oral
	Chebti	Gonorrhea	Stem (resin)	Chew resin and swallow juice	Oral
	Chebti	Gonorrhea	Root	Pound root, dilute it in water and drink juice	Oral

Scientific name/local name	Local disease name	English disease name	Part used	Method of preparation	Administration route
Cordia monoica	Zebenegna	Mental illness	Leaf	Add a number of leaves into hot coffee and drink; also massage legs with the socked leaves	Oral, dermal
Dovyalis abyssinica	Shihur	ltchy skin	Leaf	Sock parts in water, leave them over night and wash with liquid	Cutaneous
Ficus carica	Abiyi himam (lemtsi)	Vitiligo	Leaf	Pound leaves of the plant with bark of <i>Celtis</i> <i>africana</i> and <i>Acacia</i> <i>oerfota</i> , dry, mix in but- ter and smear paste on the skin	Dermal
Ficus sur	Uf shewa	Hepatitis	Fruit	Chop fruits, dry them, grind, mix powder in a water-full glass and drink	Oral
	Michi	Febrile illness	Fruit	Pound root with leaves of <i>Heliotropium cin-</i> <i>erascens</i> and rub skin with paste; also put paste on hot metal and fumi- gate yourself with steam	Dermal, nasal
	Hibet	Swelling on the skin	Fruit	Dry, grind part together with pounded fresh leaves of <i>Conyza pyr- rhopappa</i> , mix in honey and eat little amount and also smear paste on the skin	Oral
	Anker	Uvulitis	Fruit	Dry, grind together with dried seed of <i>Trigo- nella foenum-graecum</i> , mix in honey and apply on throat to ultimately swallow it	Oral
Grewia sp.	Boteta	Skin wound on hands and legs	Leaf	Chew leaves and dress paste on the affected areas	Dermal (local)
	Hibet	Swelling on the skin	Root	Chew root and dress juice on the swollen part	Dermal (local)
	Mich	Febrile illness	Root	Dry root bark, grind, put it on fire and fumigate yourself with smoke	Nasal, dermal
	Hawi semay	Herpes zoster	Leaf	Pound leaves and smear paste on the skin	Dermal
	Hibet	Swelling on the skin	Root (bark)	Pound part with root bark of <i>Grewia villosa</i> and smear on the swell- ing	Dermal (local)
Grewia villosa	Uf shewa	Hepatitis	Root (bark)	Pound, add water and drink juice	Oral
	Megerem	Anthrax	Leaf	Dry, grind and mix in honey and eat it	Oral
	Uf shewa	Hepatitis	Root (bark)	Chop down three finger-sized bark strips into smaller pieces, mix them in water and wash body below the neck with it	Dermal

Scientific name/local name	Local disease name	English disease name	Part used	Method of preparation	Administration route
	Uf shewa	Hepatitis	Root	Chop root and mix it in water and drink; also wash your face with it	Oral, dermal
	Hibet	Swelling on the skin	Root (bark)	Pound part with root bark of <i>Grewia sp.</i> And smear paste on the swelling	Dermal (local)
	Qurtset kebdi	Abdominal cramp	Stem (bark)	Pound fresh leaves of <i>Ziziphus spina-christi</i> with it the bark of <i>Grewia</i> <i>villosa</i> , add water, and then drink the liquid	Oral
	Hibet	Swelling on the skin	Leaf	Pound leaves after add- ing saliva, mix in honey and smear paste on the swollen part and dress it with a piece of cotton fabric	Dermal (local)
	Hibet	Skin infection	Leaf	Pound part and apply paste on wound	Dermal on affected par
Myrsine africana	Habi	Taeniasis	Fruit	Grind part, mix it in water and drink one glass on empty stomach	Oral
	Habi	Taeniasis	Fruit	Collect fruit and eat a hand-full of it	Oral
Olea europaea subsp. Cuspidata	Qitign	Syphilis	Root/stem	Burn and fumigate your- self with smoke	Body bath
,	Bambule	Lymphogranuloma venereum	Root/stem	Burn and fumigate your- self with smoke	Body bath
	Kurtimat	Muscle ache	Root/stem	Burn and fumigate your- self with smoke	Body bath
	Holeta/aso	Malaria	Root/stem	Burn and fumigate your- self with smoke	Body bath
	Seal	Cough	Root/stem	Burn and fumigate your- self with smoke	Body bath
	Himam sini	Tooth ache	Leaf	Chew leaves and swal- low juice to ease pain	Oral
	Holeta (aso)	Malaria	Stem	Put stem with stem of <i>Kleinia odora</i> on fire and fumigate oneself with smoke	Nasal
	Teqmat	Diarrhrea	Leaf	Pound part with root of <i>Solanum incanum</i> after adding a cup of water, filter and drink juice	Oral
Opuntia ficus-indica	Qusli	Skin wound	Stem (cladode)	Pound part and dress the wound with paste	Dermal (local)
	Qusli	Skin wound	Stem (cladode)	Cut cladode and apply jelly on the wound	Dermal on wound
Pentarrbinum insipidum	Anqer (ahniq)	Uvulitis	Root	The mother chew root and spit juice into the mouth of her child	Oral
Rubus steudneri	Wosfat, ameba	Ascariasis, amoebiasis	Fruit	Peel off skin and eat flesh	Oral
Rumex nervosus	Enewishin	Measles	Leaf/root	Pound, mix it with <i>Cit- rus aurantifolia</i> juice and apply on the skin	Cutaneous

Table 5	(continued)
---------	-------------

Scientific name/local name	Local disease name	English disease name	Part used	Method of preparation	Administration route
	Shihur	Itchy skin	Leaf	Sock parts overnight in water and wash with liquid	Cutaneous
	Ede seb	Mental illness	Leaf, root	Mix parts with root of Carissa spinarum and root of Justi- cia schimperiana, add a liter of water and pound, and add Citrus aurantifolia juice, sugar and Nigella sativa and drink juice	Oral
Ximenia americana	Qusli	Skin wound	Stem bark	Grind the bark after dry- ing using sun heat and sprinkle powder on the wound	Dermal (on the wound)
	Qusli	Skin wound	Stem (bark)	Pound fresh leaves of <i>Heliotropium</i> <i>cinerascens</i> , mix it in butter and dress the wound with paste; then add leaves of <i>Olea</i> <i>europaea</i> subsp. <i>Cus-</i> <i>pidata</i> and apply paste on the wound	Dermal (local)
Ziziphus spina-christi	Qusli	Skin wound	Root (bark)	Pound part, add butter and apply on affected part	Dermal on affected part
	Forefor	Tinea capitis	Leaf	Pound leaves after add- ing some water and smear paste on the head	
	Himam kebdi	Abdominal problem	Fruit	Eat the skin of the plant	Oral
	Qurtset kebdi	Abdominal cramp	Leaf	Pound fresh leaves, add water, filter and drink the liquid	Oral
Tirumbila (local name)	Hibet	Swelling on the skin	Leaf	Pound leaves and dress affected part with paste	Dermal (local)
Titi (local name)	Efni	Joint swelling	Leaf	Dry, grind, mix it in butter and apply paste on swol- len part	Local on swollen part

identified to a species level, except three (*Smilax aspera*, *Cynanchum abyssinicum* and *Pentarrbinum insipidum*), were also found to be consumed elsewhere in the country, which may be related to their better preference and/ or wide occurrence in different agro-ecological zones of the country.

The fact that the families Asclepiadaceae and Fabaceae and Tiliaceae contributed a relatively higher number of wild edible species could be due to a combination of factors that, among others, may include their species diversity in Ethiopia and/or better nutritional value. Fabaceae is one of the few dominant dicotyledonous families in Ethiopia contributing 486 species [42]. This family is also rich in species that have high protein content [43]. The other two families, Asclepiadaceae and Tiliaceae, also have relatively fair diversity in the country, represented by170 [44] and 47 [45] species, respectively. Studies conducted in other parts of the country also show the common use of wild edible species belonging to the aforementioned three families [14, 17, 20, 22–24, 27, 30, 46–59]. Most WEPs in the study district were found to be shrubby species, which may demonstrate the better availability of the same for harvest throughout the year. Studies carried out elsewhere in the country also reported the common use of wild shrubby plants as a source of food [14, 20, 22, 27, 39, 48–52, 54, 58–60].

Species name	Ailment	IP	IU	FL (%) value	RPL	ROP
Acacia etbaica	Skin infections	7	8	87.5	0.5	43.8
Balanites aegyptiaca	Wound on the neck	3	29	10.3	1.0	10.3
	Anthrax	17	29	58.6	1.0	58.6
	Taeniasis	8	29	27.6	1.0	27.6
Carissa spinarum	Mich (febrile illness)	3	13	23.1	0.9	20.8
	Mental illness	4	13	30.8	0.9	30.1
Grewia sp.	Skin wound on hands and legs	3	5	60.0	0.3	18.0
Grewia villosa	Hepatitis	3	8	37.5	0.5	18.8
	Swelling on the skin	3	8	37.5	0.5	18.8

Table 6 Rank order priority and fidelity level values of medicinal plants reported by three or more informants against a given ailment in Raya-Azebo District

IP number of informants who reported the utilization of medicinal plants against a specific ailment, IU number of informants who mentioned the same plant against any ailment, FL fidelity level, RPL relative popularity level, ROP rank order priority

Most of the WEPs in the district were sought for their fruits, which could be due to rich nutritional content and good taste of fruits as also claimed by informants involved in the study. Many other studies conducted elsewhere in the country also witnessed the dominance of wild edible fruits [17, 19–24, 27, 30, 31, 39, 46, 48–55, 58–72].

The fact that there was little practice of harvesting and storing WEPs in the study district for later consumption may be attributed to the perishable nature of the consumed parts, especially the fruits and leaves, which were reported to be popular. Studies conducted elsewhere in Ethiopia also reported the perishability of wild fruits and leaves [62, 71], indicating their inconvenience for long-term storage. The common consumption of raw wild edible fruits may be taken as an effort to reduce the loss of nutritional values caused by boiling. Reports of similar studies conducted elsewhere in the country also showed the wide consumption of raw fruits [20, 22, 30, 31, 39, 47–50, 52, 54, 55, 58, 65, 67–69].

The majority of the WEPs in the district were harvested and consumed during the summer and autumn seasons including June, July, August, September, October and November, and that may attributed to the fact that their edible parts (mostly fruits) abundantly ripen at that time of the year. Several studies conducted in different parts of the country also reported better harvest and consumption of WEPs in the aforementioned seasons [30, 39, 57–59, 64, 68, 73] during which people often face a critical shortage of food. The species Acacia abyssinica, Acacia seyal, Balanites aegyptiaca, Carissa spinarum, Cordia monoica, Cynanchum abyssinicum, Grewia sp., Grewia villosa, Huernia macrocarpa, Olea europaea subsp. cuspidata and Rhus natalensis, Smilax aspera, and a plant locally known as katoita were

revealed to be harvested and consumed year-round because of the availability of their edible parts, although the yield each plant may differ from season to season.

Ziziphus spina-christi, Balanites aegyptiaca and Opuntia ficus-indica were revealed as the most popular and preferred plants in the district, which may be attributed to their good harvest, taste and nutritional value. The fact that the three plants served as a good source of financial income, as also noted during interviews and market surveys, could have also contributed to their popularity. These plants were also found popular elsewhere in the northern part of the country [30, 31, 39, 55, 56, 64]. Laboratory investigation conducted elsewhere demonstrated the richness of Ziziphus spinachristi in fiber, carbohydrate and different minerals [74, 75], Balanites aegyptiaca in protein, fiber and different minerals [74-76], and Opuntia ficus-indica in carbohydrate, fiber and vitamin C [77, 78]. Preference ranking exercise revealed agricultural expansion and cutting of trees for their use as firewood as the leading factors for the depletion of WEPs in the district, which is also the case in many other parts of the country [19–21, 23, 24, 29-31, 39, 50, 52, 55, 56, 64, 66].

Analysis of data revealed that literate people (those who read and write) had better knowledge of the use of WEPs plants as compared to illiterate ones (those who do not read and write), which was in contrast to results of some studies conducted elsewhere in the country where illiterate people are more knowledgeable than literate ones [39, 58–70]. Education of most of the literate people in the study area is linked to religious institutions (mostly Christianity) and that might have contributed to their better knowledge of WEPs. Some manuscripts belonging to Christianity in different parts of the world often provide information on useful plants including medicinal and wild edible plants [79, 80].

Of the WEPs reported to have medicinal (nutraceutical) values in the study district, *Balanites aegyptiaca* and *Acacia etbaica* scored the highest rank order priority (ROP) values, *Balanites aegyptiaca* for its use to treat anthrax and *Acacia etbaica* for its use to manage skin infections. Investigations conducted elsewhere in the country also revealed the use of *Acacia etbaica* against skin infection [81–83], and the use of *Balanites aegyptiaca* against anthrax [84, 85]. Furthermore, some investigations demonstrated the antibacterial properties of *Acacia etbaica* [86, 87] and *Balanites aegyptiaca* [88–90], which corroborate the local uses of the two plants against the aforementioned health problems.

Conclusions

The current investigation demonstrated a wide use of WEPs in Raya-Azebo district as revealed by the high diversity of recorded plants (59 species), the majority of which were sought for their fruits. Most of the plants were consumed, as supplementary foods, and often by children. The highest number of WEPs was consumed in the autumn season, which includes the months of September, October and November from which September took the lead. The plants Ziziphus spina-christi, Balanites aegyptiaca and Opuntia ficus-indica were found to be the most preferred WEPs. Agricultural expansion and cutting of trees for firewood purpose were found to be the main conservation threats for WEPs. Of the total WEPs, 21 were reported to also have medicinal (nutraceutical) values. Balanites aegyptiaca and Acacia etbaica scored the highest rank order priority (ROP) values, the former for its use to treat anthrax and the later for its use to manage skin infections. In future evaluation of the nutritional value of the documented WEPs, priority should be given to those that were found popular in the study district. Likewise, priority should be given to nutraceutical plants that scored the highest ROP values in the investigation of pharmacological properties and phytochemical profiles. Furthermore, immediate attention should be given by concerned individuals and institutions in the country to manage (in situ and ex situ) wild edible and nutraceutical plants that were reported to have rare occurrences in the study District by involving the local community.

Abbreviations

AAU	Addis Ababa University
ALIPB	Aklilu Lemma Institute of Pathobiology
ANOVA	Analysis of variance
FL	Fidelity level
ROP	Rank order priority
RPL	Relative popularity level
SEM	Standard error of the mean
SPSS	Statistical Package for Social Sciences
WEPs	Wild edible plants

Acknowledgements

We thank the Office of the Vice President for Research and Technology Transfer of Addis Ababa University (AAU) for the financial support to conduct this study. We are grateful to the staff of the Raya Azebo District administration, especially Mr. Haftu Kiros, for his commendable support in facilitating our research work in the district. We thank Mr. Melaku Wondafrash at the National Herbarium of AAU for his assistance in plant identification. Last, but not least, we are indebted to the informants in Raya Azebo District who generously shared their knowledge with us in relation to the use of wild edible plants in the district and participated in the collection of plant specimens.

Author contributions

MG and TT collected the data, MG drafted the manuscript, and MG and TT edited, read and approved the final manuscript.

Funding

The expenses of this research were covered by the Office of the Vice President for Research and Technology Transfer of Addis Ababa University (grant number: TR/036/2016).

Availability of data and materials

Data related to this study were stored in a desktop computer available at Aklilu Lemma Institute of Pathobiology (ALIPB), Addis Ababa University (AAU). Readers may get access to the data through request made to ALIPB. Plant voucher specimens have been deposited at the mini-herbarium of Endod and Other Medicinal Plants Research Unit, ALIPB, AAU.

Declarations

Ethics approval and consent to participate

Ethical approval to conduct the study was obtained from the Ethical Review Committee of ALIPB, AAU (date: 19/10/2017; ref. no.: ALIPB/IRB/019/17). Approval to carry out the study was also received from the Office of the Vice President for Research and Technology Transfer, AAU (date: 25/11/2016; ref. no.: RD/PY-662/2016). Verbal consent to participate in the research was obtained from informants.

Consent for publication

Not applicable.

Competing interests

There were no competing interests.

Received: 28 July 2023 Accepted: 10 October 2023 Published online: 24 October 2023

References

- Turner NJ, Łuczaj ŁJ, Migliorini P, Pieroni A, Dreon AL, Sacchetti LE, et al. Edible and tended wild plants, traditional ecological knowledge and agroecology. Crit Rev Plant Sci. 2011;30:198–225.
- McNamara KE, Prasad SS. Valuing indigenous knowledge for climate change adaptation planning in Fiji and Vanuatu. Traditional Knowledge Bulletin. Darwin: United Nations University, 2013. http://www.unutki. org/downloads/File/Publications/TK%20.Bulletin%20Articles/2013-07% 20McNamara_Prasad_Vanuatu.pdf. Accessed 31 Jul 2015.
- Azam FMS, Biswas A, Mannan A, Afsana NA, Jahan R, Rahmatullah M. Are famine food plants also ethnomedicinal plants? An ethnomedicinal appraisal of famine food plants of two districts of Bangladesh. Evid Based Complementary Altern Med. 2014. https://doi.org/10.1155/ 2014/741712.
- Erskine W, Ximenes A, Glazebrook D, da Costa M, Lopes M, Spyckerelle L, et al. The role of wild foods in food security: the example of Timor-Leste. Food Secur. 2015;7:55–65.
- Khan FA, Bhat SA, Narayan S. Wild edible plants as a food resource: traditional knowledge. 2017; =https://doi.org/10.13140/RG.2.2.34547.53285.

- Gockowski J, Mbazo'o J, Mbah G, Moulende TF. African traditional leafy vegetables and the urban and peri-urban poor. Food Policy. 2003;28:221–35.
- Neudeck L, Avelino L, Bareetseng P, Ngwenya BN, Teketay D, Motsholapheko MR. The Contribution of edible wild plants to food security, dietary diversity and income of households in Shorobe Village. Northern Botswana Ethnobot Res Appl. 2012;10:449–62.
- Uprety Y, Poudel RC, Shrestha KK, Rajbhandary S, Tiwari NN, Shrestha UB, Asselin H. Diversity of use and local knowledge of wild edible plant resources in Nepal. J Ethnobiol Ethnomed. 2012;8:16.
- 9. Ju Y, Zhuo J, Liu B, Long C. Eating from the wild: diversity of wild edible plants used by Tibetans in Shangri-la region, Yunnan, China. J Ethnobiol Ethnomed. 2013;9:28.
- Benítez G, Molero-Mesa J, Tejero MRG. Gathering an edible wild plant: food or medicine? A case study on wild edibles and functional foods in Granada. Spain Acta Soc Bot Pol. 2017;86:3550.
- Shikov AN, Tsitsilin AN, Pozharitskaya ON, Makarov VG, Heinrich M. Traditional and Current food use of wild plants listed in the Russian Pharmacopoeia. Front pharmacol. 2017;8:841.
- 12. Hinnawi NSA. An ethnobotanical study of wild edible plants in the Northern West Bank, Palestine. MSc thesis, An-Najah National University, Nablus, Palestine; 2010.
- Sansanelli S, Ferri M, Salinitro M, Tassoni A. Ethnobotanical survey of wild food plants traditionally collected and consumed in the Middle Agri Valley (Basilicata Region, Southern Italy). J Ethnobiol Ethnomed. 2017;13:50.
- Balemie K, Kebebew F. Ethnobotanical study of wild edible plants in Derashe and Kucha districts, South Ethiopia. J Ethnobiol Ethnomed. 2006;2:53.
- Teklehaymanot T, Giday M. Ethnobotanical study of wild edible plants of Kara and Kwego semi-pastoralist people in Lower Omo River Valley, Debub Omo Zone, SNNPR, Ethiopia. J Ethnobiol Ethnomed. 2010;6:23.
- Feyssa DH, Njoka JT, Asfaw Z, Nyangito MM. Seasonal availability and consumption of wild edible plants in semiarid Ethiopia: implications to food security and climate change adaptation. J Hortic For. 2011;3:138–49.
- 17. Assefa A, Abebe T. Wild edible trees and shrubs in the semi-arid lowlands of Southern Ethiopia. J Sci Dev. 2011;1:5–19.
- Addis G, Asfaw Z, Woldu Z. Ethnobotany of Wild and Semi-wild Edible Plants of Konso Ethnic Community, South Ethiopia. Ethnobot Res Appl. 2013;11:121–41.
- Tebkew M, Asfaw Z, Zewudie S. Underutilized wild edible plants in the Chilga District, northwestern Ethiopia: focus on wild woody plants. Agric Food Secur. 2014;3:12.
- Alemayehu G, Asfaw Z, Kelbessa E. Plant diversity and ethnobotany in Berehet District, North Shewa Zone of Amhara Region (Ethiopia) with emphasis on wild edible plants. J Med Plants Stud. 2015;3:93–105.
- Meragiaw M, Asfaw Z, Argaw M. Indigenous knowledge (IK) of wild edible plants (WEPs) and impacts of resettlement in Delanta, Northern Ethiopia. Res Rev J Herb Med. 2015;4:8–26.
- Ashagre M, Asfaw Z, Kelbessa E. Ethnobotanical study of wild edible plants in Burji District, Segan Area Zone of Southern Nations, Nationalities and Peoples Region (SNNPR), Ethiopia. J Ethnobiol Ethnomed. 2016;12:32.
- 23. Berihun T, Molla E. Study on the diversity and use of wild edible plants in Bullen District Northwest Ethiopia. J Bot 2017;2017. Article ID 8383468.
- Tebkew M, Gebremariam Y, Mucheye T, Alemu A, Abich A, Fikir D. Uses of wild edible plants in Quara District, northwest Ethiopia: implication for forest management. Agric Food Secur. 2018;7:12.
- 25. Chekole G. An ethnobotanical study of plants used in traditional medicine and as wild foods in and around Tara Gedam and Amba remnant forests in Libo Kemkem Wereda, South Gonder Zone, Amhara Region, Ethiopia. MSc thesis, Addis Ababa University, Addis Ababa, Ethiopia; 2011.
- Feyssa DH, Njoka JT, Nyangito MM, Asfaw Z. Nutraceutical wild plants of semiarid East Shewa, Ethiopia: contributions to food and healthcare security of the semiarid people. Res J For. 2011;5:1–16.
- Meragiaw M. Wild useful plants with emphasis on traditional use of medicinal and edible plants by the people of Aba'ala, North-eastern Ethiopia. J Med Plant. 2016;4:1–16.
- Bilal MS. Floristic composition of woody vegetation with emphasis to Ethnobotanical importance of Wild Legumes in Laelay and Tahtay Maichew districts, Central zone, Tigray, Ethiopia. MSC thesis, Addis Ababa University, Addis Ababa; 2012.

- Tewelde F. Marketable medicinal, edible and spice plants in Endasilase-Shire District Tigray Regional State, Ethiopia. Res J Med Sci. 2018;13:1–6.
- Adhena A. Ethnobotanical study of wild and semi-wild edible plants in and around Tselim-dur Forest of Raya Alamata Woreda, Tigray National Regional State of Ethiopia. MSc thesis, Addis Ababa University, Addis Ababa; 2019.
- Habtu M. Study on wild and semi-wild edible plants in Wukro Kilte-Awulaelo, Eastern Zone of Tigray Administrative Region, Ethiopia. MSc thesis, Addis Ababa University, Addis Ababa; 2019.
- Gidey E, Dikinya O, Sebego R, Segosebe E, Zenebe A, Mussa S, Mhangara P, Birhane E. Land use and land cover change determinants in Raya Valley, Tigray, Northern Ethiopian Highlands. Agriculture. 2023;13:507.
- Gedif B, Hadish L, Addisu S, Suryabhagavan KV. Drought risk assessment using remote sensing and GIS: the case of Southern Zone, Tigray Region, Ethiopia. J Nat Sci Res. 2014;4:87–94.
- Tesfay G, Gebresamuel G, Gebretsadik A, Gebrelibanos A, Gebremeskel Y, Hagos T. Participatory rural appraisal report: Raya-Azebo Woreda, Tigray Region. Cascape working paper 2.6.5, 2014. http://www.cascape.info. Accessed 21 Nov 2016.
- Giday M. Traditional knowledge of people on plants used as insect repellents and insecticides in Raya-Azebo district, Tigray region of Ethiopia. Indian J Tradit Knowl. 2018;17:336–43.
- Tesfay K, Yohannes M, Bayisa S. Trend analysis of malaria prevalence in Raya Azebo district, Northern Ethiopia: a retrospective study. BMC Res Notes. 2018;11:900.
- Martin GJ. Ethnobotany: a method manual. London: Chapman and Hall; 1995.
- Friedman J, Yaniv Z, Dafni A, Palewitch D. A preliminary classification of the healing potential of medicinal plants, based on a rational analysis of an ethnopharmacological field survey among Bedouins in the Negev Desert. Israel J Ethnopharmacol. 1986;16:275–87.
- Girmay G, Lulekal E, Belay B, Gebrehiwot K. Wild edible plants study in a dryland ecosystem of Ethiopia. Daagu Int J Basic Appl Res. 2022;4:105–19.
- 40. Berg T, Aune J. Integrated agricultural development programme, central Tigray. Ethiopia: The Relief Society of Tigray (REST); 1997.
- Wilson RT. Coping with catastrophe: contributing to food security through crop diversity and crop production in Tigray National Regional State in northern Ethiopia. Res Sq. 2021. https://doi.org/10.21203/rs.3.rs-937220/v1.
- Fabaceae TM. In: Hedberg I, Edwards S, eds., Flora of Ethiopia and Eritrea. Volume 3: Pittosporaceae to Araliaceae, National Herbarium, Addis Ababa University, Addis Ababa, Ethiopia; 1989, pp. 49-251.
- Edwards S, Gebre Egziabher T, Tewolde-Berhan S, Asfaw Z, Ruelle R, Nebiyu A, Power AS, Tana T, Dejen A, Tsegay A, Woldu Z. A Guide to Edible Legumes Found in Ethiopia: for Extension Officers and Researchers. Published by Mekelle University Press; 2019. ISBN 978-99944-74-56-1.
- 44. Goyder et al. Asclepiadaceae. In: Hedberg I, Edwards S, Nemomissa S, eds., Flora of Ethiopia and Eritrea. Volume 4, Part 1: Apiaceae to Dipsacaceae, National Herbarium, Addis Ababa University, Addis Ababa, Ethiopia; 2003, pp. 99-193.
- Vollesen K, Demissew S. Tiliaceae. In: Edwards, S, Mesfin T., Hedberg, I., eds., Flora of Ethiopia and Eritrea. Volume 2, Part 2: Canellaceae to Euphorbiaceae, National Herbarium, Addis Ababa University, Addis Ababa, Ethiopia; 1995, pp. 145-164
- 46. Awas T. A study on the ecology and ethnobotany of non-cultivated food plants and wild relatives of cultivated crops in Gambella Region, Southwestern Ethiopia. MSc thesis, Addis Ababa University, Addis Ababa; 1997.
- Kidane B, van der Maesen LJG, van Andel T, Asfaw Z, Sosef MSM. Ethnobotany of wild and semi-wild edible fruit species used by Maale and Ari Ethnic communities in Southern Ethiopia. Ethnobot Res Appl. 2014;12:455–71.
- Anbessa B. Ethnobotanical study of wild edible plants in Bule Hora Woreda, Southern Ethiopia. Afr J Basic Appl Sci. 2016;8:198–207.
- Kebebew M, Leta G. Wild edible plant bio-diversity and utilization system in Nech Sar National Park, Ethiopia. Int J Bio-Resour Stress Manag. 2016;7:885–96.
- Alemayehu G. Plant Diversity and ethnobotanny of medicinal and wild edible plants in Amaro District of Southern Nations, Nationalities and Peoples Region and Gelana District of Oromia Region, Southern Ethiopia. PhD thesis, Addis Ababa University, Addis Ababa; 2017.

- Ayele D. Ethnobotanical Survey of wild edible plants and their contribution for food security Used by Gumuz people in Kamash Woreda, Benishangul Gumuz Regional State, Ethiopia. J Food Nutr Sci. 2017;5:217–24.
- Ayele D, Negasa D. Identification, characterization and documentation of medicinal and wild edible plants in Kashaf Kebele, Menge Woreda, Benishangul Gumuz, Ethiopia. Int J Adv Res. 2017;5:193–204.
- 53. Kebede A, Tesfaye W, Fentie M, Zewide H. An Ethnobotanical survey of wild edible plants commercialized in Kefira Market, Dire Dawa City, Eastern Ethiopia. Plant. 2017;5:42–6.
- Degualem A. Wild edible plant resources in Guangua and Banja districts and contribution for food security. MSc thesis, Addis Ababa University, Addis Ababa; 2018.
- 55. Demeke M. Ethnobotanical study of wild and semi-wild edible plants in and around GraKahsu Forrest of Raya Alamata District, Tigray, Ethiopia. MSc thesis, Hawassa University, Hawassa, Ethiopia; 2020.
- Hassen A. Diversity and potential contribution of wild edible plants to sustainable food security in North Wollo, Ethiopia. Biodiversitas. 2021;22:2501–10.
- Yimer A, Forsido SF, Addis A, Ayelgn A. Ethnobotanical study of wild edible plants used by Meinit Ethnic Community at Bench-Maji Zone Southwest Ethiopia. Res Sq. 2021. https://doi.org/10.21203/rs.3.rs-907812/v1.
- Abera M. Ethnobotanical study of wild edible plants and their indigenous knowledge in Sedie Muja district, South Gondar Zone, Northwestern Ethiopia. Am J Plant Sci. 2022;13:241–64.
- Tahir M, Abrahim A, Beyene T, Dinsa G, Guluma T, Alemneh Y, Van Damme P, Geletu US, Mohammed A. The traditional use of wild edible plants in pastoral and agro-pastoral communities of Mieso District, eastern Ethiopia. Trop Med Health. 2023;51:10.
- 60. Shiferaw M. Potential contribution of wild edible plants to urban safety net beneficiary households and determinants of collection and consumption of the plants in Addis Ababa. MSc thesis, Addis Ababa University, Addis Ababa, Ethiopia; 2020.
- Regassa T, Kelbessa E, Asfaw Z. Ethnobotany of wild and semi-wild edible plants of Chelia District, West-Central Ethiopia. Sci Technol Arts Res J. 2014;3:122–34.
- Tebkew M. Wild and semi-wild edible plants in Chilga District, Northwestern Ethiopia: implication for food security and climate change adaptation. Glob J Wood Sci Forest Wildlife. 2015;3:072–82.
- Fugaro F, Maryo M. Ethnobotanical study of wild edible plants in Kedida Gamella Woreda, Kambatta Tembaro Zone, SNNPRS, Ethiopia. Int J Mod Pharm Res. 2018;2:01–9.
- 64. Terefe A. Ethnobotanical study of wild edible plants used by local communities in Mandura District, North West Ethiopia. MSc thesis, Addis Ababa University, Addis Ababa, Ethiopia; 2019.
- 65. Waktole G. Assessments and identification of wild edible plants: the case of Sasiga District in East Wollega Zone of Oromia Regional National State, Ethiopia. MSc thesis, Addis Ababa University, Addis Ababa, Ethiopia; 2019.
- 66. Alemneh D. Ethnobotany of wild edible plants in Yilmana Densa and Quarit Districts of West Gojjam Zone, Amhara Region, Ethiopia. Ethnobot Res Appl. 2020;20:47.
- Dejene T, Agamy MS, Agúndez D, Martin-Pinto P. Ethnobotanical survey of wild edible fruit tree species in lowland areas of Ethiopia. Forests. 2020;11:177. https://doi.org/10.3390/f11020177.
- Demise S, Asfaw Z. Ethno botanical study of wild edible plants in Adola District, Southern Ethiopia. Int J Res Anal Rev. 2020;7:212–28.
- 69. Fikadu W. Ethnobotanical study of wild edible plants in Dedo District, Jimma Zone, Oromia National Regional State, Southwest Ethiopia. MSc thesis, Jimma University, Jimma, Ethiopia; 2020.
- Nigusse R, Tesfay A. Floristic composition and diversity of wild and semi wild edible tree species in Central Zone of Tigrai, Northern Ethiopia. World J Pharm Life Sci. 2020;6:11–8.
- Kidane L, Kejela A. Food security and environment conservation through sustainable use of wild and semi-wild edible plants: a case study in Berek Natural Forest, Oromia special zone, Ethiopia. Agric Food Secur. 2021;10:29.
- Emire A, Demise S, Giri T, Tadele W. Ethnobotanical study of wild edible plants in Liben and Wadera districts of Guji Zone, Southern Ethiopia. Glob J Agric Res. 2022;10:47–65.

- 73. Guyu DF, Muluneh W. Wild foods (plants and animals) in the green famine belt of Ethiopia: do they contribute to household resilience to seasonal food insecurity? For Ecosyst. 2015;2:34.
- 74. Tafesse A. Nutritional quality of underutilized wild edible fruits grown in Ethiopia. MSc thesis, Addis Ababa University, Addis Ababa, Ethiopia; 2018.
- Mokria M, Gebretsadik Y, Birhane E, McMullin S, Ngethe E, Hadgu KM, Hagazi N, Tewolde-Berhan S. Nutritional and ecoclimatic importance of indigenous and naturalized wild edible plant species in Ethiopia. Food Chem. 2022;4:100084.
- Feyssa DH, Njoka J, Asfaw Z, Nyangito MM. Nutritional contents of Balanites aegyptiaca and its contribution to human diet. Afr J Food Sci. 2015;9:346–50.
- Chiteva R, Wairagu N. Chemical and nutritional content of *Opuntia ficus-indica* (L.). Afr J Biotechnol. 2013;12:3309–12.
- Reda TH, Atsbha MK. Nutritional composition, antinutritional factors, antioxidant activities, functional properties, and sensory evaluation of cactus pear (*Opuntia ficus-indica*) seeds grown in Tigray Region, Ethiopia. Int J Food Sci. 2019. https://doi.org/10.1155/2019/5697052.
- 79. Balick MJ, Cox PA. Plants, people and culture: the science of ethnobotany. New York: Scientific American Library; 1996.
- Kibebew F. The status of availability of data of oral and written knowledge and traditional health care in Ethiopia. In: Zewdu M, Demissie A, editors. Conservation and sustainable use of medicinal plants in Ethiopia. Institute of Biodiversity Conservation and Research: Addis Ababa; 2001. p. 107–19.
- Tefera BN, Kim YD. Ethnobotanical study of medicinal plants in the Hawassa Zuria District, Sidama zone, Southern Ethiopia. J Ethnobiol Ethnomed. 2019;15:25.
- Tadege T, Hintsa K, Weletnsae T, Gopalakrishnan VK, Muthulingam M, Kamalakararao K, Krishna CK. Phytochemical screening and in vitro antibacterial activities of leaf extract Acacia etbaica Schweinf against multidrug resistant Enterobacteriaceae human pathogens. Int J Res Pharm Sci. 2020;11:4857–65.
- Yimam M, Yimer SM, Beressa TB. Ethnobotanical study of medicinal plants used in Artuma Fursi district, Amhara Regional State, Ethiopia. Trop Med Health. 2022;50:85.
- Seifu T. Ethnobotanical and ethnopharmaceutical studies on medicinal plants of Cifra District, Afar Region, Northeastern Ethiopia. MSc thesis, Addis Ababa University, Addis Ababa, Ethiopia; 2004.
- Giday M, Teklehaymanot T. Ethnobotanical study of plants used in management of livestock health problems by Afar people of Ada'ar District, Afar Regional State, Ethiopia. J Ethnobiol Ethnomed. 2013;9:8.
- Getachew B, Getachew S, Mengiste B, Mekuria A. In-vitro antibacterial activity of *Acacia etbaica* against *Staphylococcus aureus* and *Escherichia coli*. Afr J Basic Appl Sci. 2015;7:219–22.
- Abdullah AB, Al-zaemey A, Mudhesh Al-Husami RH, Al-Nowihi M. Evaluation of antimicrobial activity of *Acacia etbaica* water extract leafs against some pathogenic microorganisms. J Biomed Res Environ Sci. 2021;2:1132–5.
- Jahan N, Khatoon R, Shahzad A, Shahid M. Antimicrobial activity of medicinal plant *Balanites aegyptiaca* Del. and its in vitro raised calli against resistant organisms especially those harbouring bla genes. J Med Plants Res. 2013;7:1692–8.
- Anani K, Adjrah Y, Améyapoh Y, Karou SD, Agbonon A, de Souza C, Gbeassor M. Antimicrobial activities of *Balanites aegyptiaca* (L.) Delile (*Balanitaceae*) on bacteria isolated from water well. J Appl Pharm Sci. 2015;5:052–8.
- Khanam S, Galadima FZ. Antibacterial activity of Balanites aegyptiaca oil extract on *Staphylococcus aureus* and *Escherichia coli*. bioRxiv. 2021. https://doi.org/10.1101/2021.03.23.436600.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.