REVIEW

Open Access

A systematic review and meta-analysis on the global prevalence of microsporidia infection among dogs: a zoonotic concern

Ali Taghipour^{*+}, Saeed Bahadory⁺ and Sasan Khazaei⁺

Abstract

Background: Microsporidiosis is an emerging zoonotic disease that is considered a global public health concern. Dogs are suggested as one of potential reservoirs for transmitting the microsporidia infection to humans. However, there is little data on distribution of microsporidia in dogs. The current study aimed to evaluate the global prevalence and genetic diversity of microsporidia infection among the dog population.

Methods: We searched four major databases for studies reporting the prevalence of microsporidia in dogs until 30 May 2020. A random-effects model was used to estimate the overall and the subgroup-pooled prevalence of microsporidia across studies.

Result: Finally, a total of 32 studies (including 37 datasets) from 17 countries were included in this meta-analysis. The overall prevalence (95% CI) of microsporidia infection was estimated at 23.1% (13.5–36.8%) using microscopic methods, 20.9% (14.6–29%) using serological methods, and 8.4% (6.1–11.5%) using molecular methods. Molecular methods showed that the highest number of reports was related to *Enterocytozoon bieneusi* with a pooled prevalence of 6.5% (4.9–8.7%). Considering *E. bieneusi* genotypes, most studies reported the PtEb IX (10 studies) and the D (eight studies) genotypes.

Conclusion: These results emphasize the role of a dog as a reservoir host for human-infecting microsporidia. In addition, monitoring programs for human-infecting microsporidia in animals with close contact to humans should be considered.

Keywords: Microsporidia infection, Dogs, Prevalence, Meta-analysis

Background

Microsporidiosis is an emerging disease caused by opportunistic unicellular organisms called microsporidia comprising more than 200 genera with approximately 1500 species. Microsporidia can infect a broad range of vertebrate and invertebrate hosts [1–3]. Epidemiological studies over the world showed that *Enterocytozoon bieneusi* (*E. bieneusi*) and *Encephalitozoon* species (*Enc. cuniculi, Enc. intestinalis,* and *Enc. hellem*) are the most

* Correspondence: alitaghipor71@yahoo.com

common species of microsporidia reported from humans and a wide range of animals [4, 5]. Microsporidia infection in immunocompetent individuals is mostly limited to mild or self-limiting diarrhea. This infection maybe reported from intestinal, pulmonary, ocular, muscular, and renal diseases in immunocompromised patients [6– 9]. The main transmission routes of microsporidia seem to be fecal-oral transmission of spores from infected humans and animals through contaminated food and water together with inhalation of spores [2, 10, 11]. Human-infecting microsporidia have been frequently reported from domesticated animals, wild and laboratory animals, and birds highlighting the high probability of zoonotic transmission [12, 13].

© The Author(s). 2020 **Open Access** This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

 $^{^{\}rm +}{\rm Ali}$ Taghipour, Saeed Bahadory and Sasan Khazaei contributed equally to this work.

Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box 14115-111, Tehran, Iran

From past to present, dogs play an important role in the psychological and physiological well-being of humans, especially children and elderly individuals [14, 15]. Nevertheless, dogs pose a potential health risk to human society, so that they can transmit more than 100 infectious zoonotic diseases to humans [16–19]. In relation to the One-Health approach, the health of a community is connected to the health of animals and the environment [20, 21]. Therefore, dogs play a major role in the transmission dynamics of microsporidia spores due to their wide niche and close contact to humans [12, 22, 23].

In recent years, a growing number of studies have been conducted on the prevalence of microsporidia infection among dogs, although there is a big gap in our knowledge in many countries. In this review, we described the global prevalence and genetic diversity of microsporidia infection in dogs.

Materials and methods

Systematic search strategy

In this review, the protocols recommended by the "preferred reporting items for systematic reviews and metaanalyses statement (PRISMA)" were followed for all eligible studies [24]. To assess the prevalence of microsporidia infection in dogs from a global scale, we performed a comprehensive systematic review and meta-analysis of literature (full text or abstracts) published online. Four major databases (PubMed, Web of Science, Scopus, and Google Scholar) were searched by two expert reviewers (S.B. and S.K.) for relevant studies published until 30 May 2020. Searching process was accomplished using MeSH terms alone or in combination: ("Microsporidiosis" OR "Microsporidia" OR "Microsporidium" OR "Microspora" OR "Nosema" OR "Enterocytozoon bieneusi" OR "Encephalitozoon spp.") AND ("Prevalence" OR "Epidemiology") AND ("Dog" OR "Canine"). Additionally, the references of all selected articles were handsearched to finding other relevant articles or their citations by searching in Google Scholar.

Eligibility criteria, study selection, and data extraction

Eligible articles were screened initially by title and abstract. All selected articles were imported into the End-Note X8 software (Thomson Reuters, New York, USA), and duplicated articles were checked and then removed. After removing duplicates, the full text of qualified records was retrieved and two expert investigators (S.B. and S.K.) evaluated the eligibility of the articles. Afterward, an investigator (A.T.) extracted the required information, and two others (S.B. and S.K.) rechecked them; any discrepancies of opinion or disagreement were resolved by consensus and discussion with the lead investigator (A.T.). In this systematic review, a strict protocol for the inclusion of papers was defined by our research team. So, we included articles that they had all of the following inclusion criteria: (1) peer-reviewed original research articles or short reports or letters to the editors that studied the prevalence of microsporidia in dogs; (2) the papers with full-text or abstract in English without geographical restriction; (3) papers published online from the inception up to 30 May 2020 with a digital object identifier (DOI); (4) the investigations which examined microsporidia infection via at least one of the following methods, including molecular, serology, microscopy, or coproantigen, to detect the microorganism in feces and/or serum; and (5) those papers that provided the exact total sample size and positive samples. The papers were excluded if they did not meet the abovementioned criteria. Besides, we excluded articles from further considerations with the following characteristics: (1) the articles that reported microsporidia infection from humans and animals (except dogs); (2) specimens collected from the urine and tissues of dogs; (3) investigations of dogs which had been experimentally infected for other purposes, but not prevalent; (4) immunocompromised animals; and (5) all types of review papers, case reports, and case series.

The following variables were extracted for each study: first author's last name, year of publication, country, types of samples tested (fecal and/or serum), diagnostic method, type of animals (pet or stray), the number of studied animals, and the number of animals with a positive test result. In addition, if possible, the prevalence was stratified by age (≤ 12 vs > 12 months of age) and gender of animals. Concerning molecular methods, the identified species/genotypes were also extracted. Since there were several types of dogs in the studies included, we divided dogs into (1) pet (domesticated) animals: "pet, household, sheltered or domesticated"; (2) stray animals: "stray, free-roaming or feral"; (3) unknown animals: "It is not clear whether the dogs are domesticated or stray."

Study quality assessment

The Joanna Briggs Institute (JBI) checklist was used for quality assessment of the included articles [25]. This checklist contains ten questions with four options including, yes, no, unclear, and not applicable. Briefly, a study can be awarded a maximum of one star for each numbered item. The papers with a total score of 4–6 and 7–10 points were specified as the moderate and high quality, respectively. Based on the obtained score, the authors have decided to include (4–10 points) and exclude (\leq 3 points) the papers.

Data synthesis and statistical analysis

Comprehensive Meta-Analysis (V2.2, Bio stat) software was used to perform analysis. To minimize the biases,

we calculated the prevalence of microsporidia infection (the pooled prevalence and 95% confidence interval (CI)) for individual diagnostic methods (molecular, serology, microscopy methods) using the random-effects model (REM). The REM allows for a distribution of true effect sizes between published studies. Moreover, using subgroup analyses, the pooled prevalence of microsporidia infection was estimated according to the continents, countries, and type of animals. An odds ratio (OR) (and the corresponding 95% CI) was calculated using REM for each study to assess the association between microsporidia prevalence and risk factors such as age (animals aged 12 months or less and those more than 12 months) and gender (males and females). To calculate the heterogeneity between studies, t^2 statistic and the Q statistic were used. Publication bias was not estimated, because it is considered irrelevant for prevalence studies [26]. Moreover, due to different sensitivities and specificities of diagnostic methods, we assumed that our results would be "apparent" prevalence rates and did not represent true prevalence rates. Results are shown as forest plots of the pooled prevalence (with 95% CI) of microsporidia infection in dogs.

Results

Study characteristics

A flow diagram summarizing the study selection process is presented in Fig. 1. In brief, a total of 1431 records datasets used molecular, serological, and microscopical methods, respectively. It should be noted that two studies used microscopic and coproantigen test for detection of microsporidia at the same time (the main characteristics of each study together with the types of implemented method are listed in Tables 1, 3 and 4, respectively). The results of the literature review and meta-analysis was separately considered for each of the three detection methods. Due to the low number of included studies in serological and microscopic methods, the subgroup analysis of continents and countries was performed only for molecular methods.

were found following the initial search of databases; after

removing duplicates and/or non-eligible papers, 32 pa-

pers had eligibility to be included in this systematic re-

view and meta-analysis [13, 23, 27-56]. Among these 32

studies, five studies had two datasets. In this regard, 32

studies containing 37 datasets were reviewed. The results

of quality assessment according to JBI for eligible studies

are mentioned in Tables 1, 3, and 4. The included arti-

cles in the present meta-analysis showed an acceptable

quality. Out of the retrieved articles, 23, nine, and five

The results based on molecular methods

As shown in Table 1, a total of 23 datasets from 12 countries have examined the prevalence of microsporidia species in dogs using molecular methods including 11

-	8	
	X	
	č	
	片	
	۳	
	\subseteq	
	۳	
-	<u>=</u>	
	2	
	ă	
-	Ĩ	
	2	
	0	
	ř	
	σ)
	č	
-	5	
	Ĕ	
	В	
	Ŭ	
	σ	
	S	
	ğ)
	$\underline{\circ}$	
	C	
	\subseteq	
•	Ξ	
	5	
	2	
	t	
	ĕ	
	ŧ	
	1	
	ത	
-	ਜ਼ਿੰ	
	Ľ	
	ō	
	ā	
	S	
	2	
	$\underline{\circ}$	
	F	
	<u>`</u>	
	╘	
	2	
	₽	`
•	5	
	2	
	Ş	
-	aiver	
-	: diver	
-	cic diver	
-	etic diver	
-	netic diver	
-	lenetic diver	
-	genetic diver	2
-	d genetic diver	2
-	nd genetic diver)
-	and genetic diver)
-	e and genetic diver	2
-	ice and genetic diver	2
-	ence and genetic diver)
-	ilence and genetic diver)
-	valence and genetic diver)
-	evalence and genetic diver	0
-	orevalence and genetic diver)
-	Prevalence and genetic diver	- -
-	al prevalence and genetic diver	-
-	bal prevalence and genetic diver	-
	lobal prevalence and genetic diver	-
-	global prevalence and genetic diver	- -
	e global prevalence and genetic diver	- -
-	he global prevalence and genetic diver	
	the global prevalence and genetic diver	0
	g the global prevalence and genetic diver	
-	ing the global prevalence and genetic diver	- -
	ating the global prevalence and genetic diver	- -
	gating the global prevalence and genetic diver	
	tigating the global prevalence and genetic diver	- 0
	stigating the global prevalence and genetic diver	- 0
	vestigating the global prevalence and genetic diver	0
	nvestigating the global prevalence and genetic diver	
	investigating the global prevalence and genetic diver	
	es investigating the global prevalence and genetic diver	- D
	ties investigating the global prevalence and genetic diver	- D
	Jaies investigating the global prevalence and genetic diver	- 0 0
	tudies investigating the global prevalence and genetic diver	
	studies investigating the global prevalence and genetic diver	
	he studies investigating the global prevalence and genetic diver	- D
	the studies investigating the global prevalence and genetic diver	- 0 0
	I the studies investigating the global prevalence and genetic diver	- 0 0
	All the studies investigating the global prevalence and genetic diver	- D
	All the studies investigating the global prevalence and genetic diver	- 0 0

Ali Ali Field Fie	Continent, country	First author	Publication Year	Type of sample	Diagnostic methods	Genes	Sample size	Total infected	E. bieneusi (Genotypes)	Enc. cuniculi	Enc. intestinalis	Quality assessment
ChoiceZhang et al.201FeelRCI1522ChUKUNCHM6(1)Inome cal.204FeelNeared-FCTS349522CHUKUNCHM6(1)Inome cal.204FeelNeared-FCTS3495434787570-300170001Inome cal.2015FeelNeared-FCStu-ffMA and TS20731875770-203617050170001Inot2015FeelNeared-FCStu-ffMA and TS207207317-580170601Inot20162016FeelNeared-FCStu-ffMA and TS207207317-580170601Inot20162016FeelNeared-FCStu-ffMA and TS207207317-580170601Inot201620167016Neared-FCStu-ffMA and TS207207317-580170601Inot201620167016Neared-FCStu-ffMA and TS207201201717-580170101Inot20167012016701701701701701201717-580170101Inot2016701701701701701701701701717-5801701Inot2016701701701701701701701717-5801701Inot20167017017017017701701717-580170Inot2016701701701701701717-580170701717-580170Inot701701701701701701717-580170701717-580170<	Asia											
IdenticalZ014FeedNested-PCBIS3485456	China	Zhang et al.	2011	Fecal	PCR	ITS	26	2	2 (CHN5(1)-CHN6(1))	I	ı	8
Lietal 2015 Fead Netad-RC SU-HAN and ITS 267 18 REBAC/MED(1)-EbaC(1)- EbaC(1) Xue tal 206 Fead Netad-RC 37 45 29 2 (PEb MX2PED)(1)- EbaC(1) Nue tal 2016 Fead Netad-RC 135 29 2 (PEb MX2PD(1))- EbaC(1) Nue tal 2016 Fead Netad-RC 135 27 2 (PEb MX2PD(1))- EbaC(1) Nue tal 2013 Fead Netad-RC SSU-HAN and ITS 27 2 (PED MX2PD(1))- EbaC(1) Japan Jamshidi et al 2013 Fead Netad-RC SSU-HAN and ITS 27 2 (PED MX2PD(1))- EbaC(1) Japan Jamshidi et al 2013 Fead Netad-RC SSU-HAN and ITS 27 2 (Jap MX2PD(1))- EbaC(1) Japan Japan 2019 Fead Netad-RC SSU-HAN and ITS 27 2 (Jap MX2PD(1))- EbaC(1) Japan Japan 2013 Fead Netad-RC SSU-HAN and ITS 27 2 (Jap MX2PD(1))- Z (Jap Z) 2 (Jap Z) 2 (Jap Z)		Karim et al.	2014	Fecal	Nested-PCR	ITS	348	54	54 (PtEb IX(26)-O(4)-EbpA(2)- pigEBIT55(1)-D(3)-CD1(1)-CD2(1)- CD3(1)CD4(1)-CD5(1)-CD6(1)- CD7(2)-CD8(4)-CD9(1)-CM1(2)- Peru8(1)-EbpC(1)-type IV(1))	1	ı	10
Xue railZ016FecalNered+CRITS4852929707070Wen-Chao et al.Z013FecalNered+CRITSZ1Z7		Li et al.	2015	Fecal	Nested-PCR	SSU-rRNA and ITS	267	18	18 (EbpC/NED1(1)-EbpC(1)- NED2(1)-PtEb IX(14)-D(1))	ı	ı.	10
Wen-Chao et al.2018FecalNesced-PCIITS212727/PEB M(16-CHD)(2)-EHDCIamJambidiet al.2012FecalPCRSSU-HNA10031Rundoown)Asian et al.2013FecalNesced-PCRSSU-HNA and ITS732Quidoown)JapanAbsert et.al.2019FecalNesced-PCRSSU-HNA and ITS7344DenowniJapanAbsert et.al.2019FecalNesced-PCRSSU-HNA and ITS7322Quidoown)JapanAbsert et.al.2019FecalNesced-PCRITS73244DenowniJapanAbsert et.al.2019FecalNesced-PCRITS2057322QuidoowniLunomMori et.al.2019FecalNesced-PCRITS20522CuidoowniLunomMori et.al.2019FecalNesced-PCRITS20522CuidoowniLunomLores et.al.2019FecalNesced-PCRITS2052CuidoowniLunomLores et.al.2014FecalNesced-PCRITS22CuidoowniLunomLores et.al.2019FecalNesced-PCRITS22CuidoowniLunomLores et.al.2014FecalNesced-PCRITS22CuidoowniLunomLores et.al.2014FecalNesced-PCRITS <t< td=""><td></td><td>Xu et al.</td><td>2016</td><td>Fecal</td><td>Nested-PCR</td><td>ITS</td><td>485</td><td>29</td><td>29 (PtEb IX(28)-D(1))</td><td>ı</td><td></td><td>10</td></t<>		Xu et al.	2016	Fecal	Nested-PCR	ITS	485	29	29 (PtEb IX(28)-D(1))	ı		10
IntJamehidietal,2012FealCRSU-RNA100318 (uninown)Asare et al.2015FealNeseeHCRSU-RNA and ITS722 (uninown)Derobaei et al.2019FealNeseeHCRSU-RNA and ITS722 (uninown)Derobaei et al.2019FealNeseeHCRSU-RNA and ITS722 (uninown)Derobaei et al.2019FealNeseeHCRSU-RNA and ITS722 (uninown)Derobaei et al.2019FealNeseeHCRITS722 (uninown)Derobaei et al.2019FealNeseeHCRITS722 (uninown)Derobaei et al.2019FealNeseeHCRITS205000Derobaei et al.2019FealNeseeHCRITS222 (uninown)Derobaei et al.2019FealNeseeHCRITS2222Derobaei et al.2019FealNeseeHCRITS2222Derobaei et al.2019FealNeseeHCRITS22222Derobaei et al.2019FealNeseHCRITS222222Derobaei et al.2019FealNeseHCRITS2222222Derobaei et al.2019FealNeseHCRITSS2222 <t< td=""><td></td><td>Wen-Chao et al.</td><td>2018</td><td>Fecal</td><td>Nested-PCR</td><td>ITS</td><td>315</td><td>27</td><td>27(PtEb IX(16)-CHD1(2)-EbpC(4)- CHD2(2)-CHD3(3))</td><td>ı</td><td>ı.</td><td>10</td></t<>		Wen-Chao et al.	2018	Fecal	Nested-PCR	ITS	315	27	27(PtEb IX(16)-CHD1(2)-EbpC(4)- CHD2(2)-CHD3(3))	ı	ı.	10
Aslarie tail2015FecalNested-PCRSU-MNA and ITS22(unhoom)Derobae te al.2019FecalNested-PCRSU-MNA and ITS75244(D genotype)Derobae te al.2019FecalNested-PCRITS7522(unhoom)Phompraphai tet al.2019FecalNested-PCRITS7522(unhoom)Phompraphai tet al.2019FecalNested-PCRITS22222Deropathai tet al.2019FecalNested-PCRITS22222Solan-Dizz et al.2014FecalPCRSU-MNA and ITS22222Dashti et al.2014FecalPCRSU-MNA and ITS222222Dashti et al.2014FecalPCRSU-MNA and ITS222222Dashti et al.2014FecalPCRSU-MNA and ITS222222Dashti et al.2014FecalPCRSU-MNA and ITS2222222Dashti et al.2014FecalPCRSU-MNA and ITS22222222Dashti et al.2014FecalPCRSU-MNA and ITS22222222222222 <td>Iran</td> <td>Jamshidi et al.</td> <td>2012</td> <td>Fecal</td> <td>PCR</td> <td>SSU-rRNA</td> <td>100</td> <td>31</td> <td>8 (unknown)</td> <td>18</td> <td>Ŋ</td> <td>10</td>	Iran	Jamshidi et al.	2012	Fecal	PCR	SSU-rRNA	100	31	8 (unknown)	18	Ŋ	10
DefrobationDefrobation2019FecalNested-PCRSU-RNA and ITS75440 genomeJapanAbe et al.2009FecalNested-PCRITS7922(dog-specific genotype)Phompaphai et al.2019FecalNested-PCRITS22(dog-specific genotype)Phompaphai et al.2013FecalNested-PCRITS22(dog-specific genotype)Phompaphai et al.2013FecalNested-PCRITS22(dog-specific genotype)SpainLores et al.2013FecalPCRSSU-RNA and ITS22(dog-specific genotype)SpainLores et al.2014FecalPCRSSU-RNA and ITS22(dog-specific genotype)SpainLores et al.2019FecalPCRSSU-RNA and ITS22(dog-specific genotype)SpainLores et al.2019FecalNested-PCRITS22(dog-specific genotype)Potrugal a^{-} Lobo et al.2019FecalNested-PCRITS2200Potrugal a^{-} Lobo et al.2019FecalNested-PCRITS2200Potrugal a^{-} Lobo et al.2019FecalNested-PCRITS2200Potrugal a^{-} Lobo et al.2019FecalNested-PCRITS2200PotrugalPotrugal<		Askari et al.	2015	Fecal	Nested-PCR	SSU-rRNA	17	2	2 (unknown)	ı		7
JapanAbe et al.2009FecalNested-PCRITS7922 (dog-specific genotype)Phromparphi et al.2019FecalNested-PCRITS222 (dog-specific genotype)ThallandMori et al.2013FecalNested-PCRITS222 (dog-specific genotype) Eutope Lores et al.2013FecalNested-PCRITS222 (dog-specific genotype)SpainLores et al.2014FecalSU-RNA and ITS7222 (dog-specific genotype)SpainLores et al.2019FecalPCRSU-RNA and ITS7222 (dog-specific genotype)SpainLores et al.2019FecalNested-PCRITS22212Potrugal 1 Lobo et al.2019FecalNested-PCRITS222221Potrugal 1 Lobo et al.2019FecalNested-PCRITS2222111Potrugal 1 Lobo et al.2016FecalNested-PCRITS22222211 <td></td> <td>Delrobaei et al.</td> <td>2019</td> <td>Fecal</td> <td>Nested-PCR</td> <td>SSU-rRNA and ITS</td> <td>75</td> <td>4</td> <td>4 (D genotype)</td> <td>ı</td> <td></td> <td>6</td>		Delrobaei et al.	2019	Fecal	Nested-PCR	SSU-rRNA and ITS	75	4	4 (D genotype)	ı		6
Phrompaphal et al.2019FecalNested-PCRTiCol2626 (PEL I0)ThallandMori et al.2013FecalNested-PCRTi20602626 (PEL I0)Europe </td <td>Japan</td> <td>Abe et al.</td> <td>2009</td> <td>Fecal</td> <td>Nested-PCR</td> <td>ITS</td> <td>79</td> <td>2</td> <td>2 (dog-specific genotype)</td> <td>ı</td> <td></td> <td>7</td>	Japan	Abe et al.	2009	Fecal	Nested-PCR	ITS	79	2	2 (dog-specific genotype)	ı		7
ThillardMori et al.2013FecalNested-PCRITS20600Eucore </td <td></td> <td>Phrompraphai et al.</td> <td>2019</td> <td>Fecal</td> <td>Nested-PCR</td> <td>ITS</td> <td>597</td> <td>26</td> <td>26 (PtEb IX)</td> <td>ı</td> <td></td> <td>10</td>		Phrompraphai et al.	2019	Fecal	Nested-PCR	ITS	597	26	26 (PtEb IX)	ı		10
EuropeSpainLores et al.2002FecalPCRSSU-fRNA1722 (unknown)SpainLores et al.2012FecalPCRSSU-fRNA and ITS73147 (A genotype)Dashri et al.2019FecalNestechPCRTS23722 (BEB6 and PEE) IX genotype)Portugal* Lobo et al.2003FecalPCRSSU-fRNA and ITS733 (Unknown)Portugal* Lobo et al.2003FecalPCRSSU-fRNA3633 (Unknown)Portugal* Lobo et al.2016FecalPCRSSU-fRNA3633 (Unknown)PolandPiekarska et al.2016FecalNestechPCRTS and MSP363 (Unknown)PolandPiekarska et al.2017FecalNestechPCRTS and MSP363 (D genotype)VirksyDuzlu et al.2019FecalNestechPCRSSU-fRNA, ITS and MSP363 (D genotype)VirksyDuzlu et al.2019FecalNestechPCRSSU-fRNA, ITS and MSP363 (D genotype)VirksyDuzlu et al.2019FecalPCRSSU-fRNA, ITS and MSP363 (D genotype)VirksyDuzlu et al.2019FecalPCRSSU-fRNA, ITS and MSP363 (D genotype)VirksyDuzlu et al.2019FecalPCRSSU-fRNA, ITS and MSP363 (D genotype)Metrica12PCRSSU-fRNA, ITS and MSP282 <td>Thailand</td> <td>Mori et al.</td> <td>2013</td> <td>Fecal</td> <td>Nested-PCR</td> <td>ITTS</td> <td>206</td> <td>0</td> <td>0</td> <td>ı</td> <td>ı</td> <td>8</td>	Thailand	Mori et al.	2013	Fecal	Nested-PCR	ITTS	206	0	0	ı	ı	8
SpainLores et al.2002FecalPCRSSU-RNA1722 (unknown) a Galvan-Diaz et al.2014FecalPCRSSU-RNA and ITS73147 (a genotype)Dashti et al.2019FecalNested-PCRISSU-RNA and ITS23722 (BEB6 and PEIb IX genotype)Portugal a Lobo et al.2019FecalPCRSSU-RNA3633 (Unknown) a Matos et al.2010FecalPCRSSU-RNA3633 (Unknown) a Matos et al.2016FecalPCRSSU-RNA3633 (Unknown)PolandPekarska et al.2016FecalNested-PCRITS3633 (Unknown)PolandPekarska et al.2016FecalNested-PCRITS3633 (Unknown)PolandPekarska et al.2016FecalNested-PCRITS3633 (Unknown)SwitzerlandMathis et al.2017FecalNested-PCRITS and MSP3633 (D genotype)UnkrywDuzlu et al.1999FecalPCRITS and MSP3633 (D genotype)UnkrywDuzlu et al.2019FecalNested-PCRITS and MSP3633 (D genotype)UnkrywDuzlu et al.2019FecalPCRITS and MSP3633 (D genotype)UnkrywDuzlu et al.2019FecalPCRITS and MSP363<	Europe											
$^{\circ}$ Galvan-Diaz et al.2014FecalPCRSSU-fRNA and ITS73147 (A genotype)Dashti et al.2019FecalNested+PCRITS23722BEB6 and PtEb IX genotype)Portugal $^{\circ}$ Lobo et al.2003FecalPCRSSU-fRNA3633 (Unknown) $^{\circ}$ Matos et al.2004FecalPCRSSU-fRNA5833 (Unknown) $^{\circ}$ Matos et al.2016FecalNested+PCRITS5833 (Unknown)PolandPiekarska et al.2017FecalNested+PCRITS5833 (Unknown)PolandPiekarska et al.2017FecalNested+PCRITS5833 (Unknown)NutzerlandMathis et al.2017FecalNested+PCRITS and MSP5833 (Unknown)SwitzerlandMathis et al.2019FecalNested+PCRITS and MSP3633 (D genotype)SwitzerlandNathis et al.2019FecalNested+PCRSSU-fRNA, ITS and MSP3633 (D genotype)SwitzerlandDuzlu et al.2019FecalNested+PCRSSU-fRNA, ITS and MSP282410MetricaNathis et al.2019FecalNested+PCRSSU-fRNA, ITS and MSP282410MetricaNathis et al.2019FecalPCRITS and MSP282410MetricaSantin et al.2019Fecal<	Spain	Lores et al.	2002	Fecal	PCR	SSU-rRNA	17	2	2 (unknown)	I	ı	7
Dashti et al.2019FecalNested-PCRITS23722 (BEB6 and PELb IX genotypenor		^a Galvan-Diaz et al.	2014	Fecal	PCR	SSU-rRNA and ITS	73	14	7 (A genotype)	I	ı	8
Portugal a Lobo et al.2003FecalPCRSSU-RNA3633 (Unknown) a Matos et al.2004FecalPCRSSU-RNA5833 (Unknown)PolandPekarska et al.2016FecalNested-PCRITS6542 (PEb K(1)-D(1))PolandPekarska et al.2017FecalNested-PCRITS6542 (PEb K(1)-D(1))SwitzerlandPekarska et al.2017FecalNested-PCRITS and MSP8264 (PEB K(2)-D(2))SwitzerlandMathis et al.2019FecalNested-PCRITS and MSP3633 (D genotype)SwitzerlandMathis et al.2019FecalNested-PCRITS and MSP282410UnkeyDuzlu et al.2019FecalNested-PCRSU-RNA, ITS and MSP282410AmericaNested-PCRItS and MSP282120181818OcombiaSantin et al.2008FecalPCRITS and MSP282410AmericaNested-PCRItS INFS/NIR and MSP28212018181818AmericaSanti et al.2016FecalPCRItS INFS/NIR and SSU-RNA10181410AmericaSanti et al.2016FecalPCRItS INFS/NIR and SSU-RNA120181410AmericaItSItSItSItS INFS/NIR and SSU-RNAIt		Dashti et al.	2019	Fecal	Nested-PCR	ITS	237	2	2 (BEB6 and PtEb IX genotypes)	I	ı	10
a Matos et al.2004FecalPCRSSU-RNA5833 (Unknown)PolandPiekarska et al.2016FecalNested-PCRITS6542 (PtEb IX(1)-D(1))Piekarska et al.2017FecalNested-PCRITS and MSP8264 (PtEb IX(2)-D(2))SwitzerlandMathis et al.1999FecalNested-PCRITS and MSP3633 (D genotype)SwitzerlandWathis et al.2019FecalNested-PCRSSU-RNA, ITS and MSP3633 (D genotype)TurkeyDuzlu et al.2019FecalNested-PCRSSU-RNA, ITS and MSP282410AmericaAnteria2008FecalPCRITS and MSP282410AmericaSantin et al.2008FecalPCRITS and MSP2824110AmericaSantin et al.2016FecalPCRITS and SU-RNA1081314 (unknown)AmericaSantin et al.2016FecalPCRITS and SU-RNA1082314	Portugal	^a Lobo et al.	2003	Fecal	PCR	SSU-rRNA	36	e	3 (Unknown)	ı		7
PolandPiekarska et al.2016FecalNested-PCRITSITSIt2ItE ID (1)Piekarska et al.2017FecalNested-PCRITSRS8264 (PtE) IX(1)-D(1)SwitzerlandMathis et al.1999FecalNested-PCRITS and MSP3633 (D genotype)TurkeyDuzlu et al.2019FecalNested-PCRSSU-fRNA, ITS and MSP282410TurkeyDuzlu et al.2019FecalNested-PCRSSU-fRNA, ITS and MSP282410AmericaAmerica1201FecalPCRITS1201818 (PtEb IX(16)-K(1)-Peru5(1))AmericaSantin et al.2016FecalPCRITS1201818 (PtEb IX(16)-K(1)-Peru5(1))AfricaEgyptAl-Herraw et al. ^a 2016FecalPCRITF/SINTR and SSU-fRNA1082314 (unknown)AfricaItsPCRItsItsItsItsItsItsItsItsAfricaItsItsItsItsItsItsItsItsItsItsAfricaIts<		^a Matos et al.	2004	Fecal	PCR	SSU-rRNA	58	e	3 (Unknown)	ı		7
Piekarska et al.2017FecalNested-PCRITSITSIteleIt	Poland	Piekarska et al.	2016	Fecal	Nested-PCR	ITS	65	4	2 (PtEb IX(1)-D(1))	2	ı	7
SwitzerlandMathis et al.1999FecalPCRITS and MSP3633 (D genotype)TurkeyDuzlu et al.2019FecalNested-PCRSSU-rRNA, ITS and MSP282410America <td< td="">$\times$$\times$$\times$$\times$$\times$$\times$$\times$$\times$$\times$AmericaSantin et al.2008FecalPCRITSITS$\times$$\times$$\times$ColombiaSantin et al.2008FecalPCRITS$\times$$\times$$\times$$\times$$\times$AfricaAfricaAtherawy et al.a2016FecalPCRSINTF/SINTR and SSU-rRNA$\times$$\times$$\times$$\times$$\times$EgyptAl-Herawy et al.a2016FecalPCRSINTF/SINTR and SSU-rRNA$\times$$\times$$\times$$\times$$\times$$\times$CocaniaCocania$\times$$\times$$\times$$\times$$\times$$\times$$\times$$\times$$\times$$\times$$\times$$\times$$\times$$\times$</td<>		Piekarska et al.	2017	Fecal	Nested-PCR	ITS	82	9	4 (PtEb IX(2)-D(2))	2	,	6
Turkey Duzlu et al. 2019 Fecal Nested-PCR SSU-RNA, ITS and MSP 282 41 0 America	Switzerland	Mathis et al.	1999	Fecal	PCR	ITS and MSP	36	č	3 (D genotype)	I	ı	7
America Immedia Santin et al. 2008 Fecal PCR ITS 120 18 (PtEb IX(16)-K(1)-Peru5(1)) Africa Egypt Al-Herrawy et al. ^a 2016 Fecal PCR SINTF/SINTR and SSU-rRNA 108 23 14 (unknown) Oceania Coceania Command	Turkey	Duzlu et al.	2019	Fecal	Nested-PCR	SSU-rRNA, ITS and MSP	282	41	0	9	35	10
Colombia Santin et al. 2008 Fecal PCR ITS 120 18 (PtEb IX(16)-K(1))-Peru5(1)) Africa Egypt Al-Herrawy et al. ^a 2016 Fecal PCR SINTF/SINTR and SSU-rRNA 108 23 14 (unknown) Oceania Coceania Coceania Colombia Colombia Colombia Colombia Colombia	America											
Africa Africa Egypt Al-Herrawy et al. ^a 2016 Fecal PCR SINTF/SINTR and SSU-rRNA 108 23 14 (unknown) Oceania Oceania PCR SINTF/SINTR and SSU-rRNA 108 23 14 (unknown)	Colombia	Santin et al.	2008	Fecal	PCR	ITTS	120	18	18 (PtEb IX(16)-K(1)-Peru5(1))	I	ı	6
Egypt AI-Herrawy et al. ^a 2016 Fecal PCR SINTF/SINTR and SSU-rRNA 108 23 14 (unknown) Oceania	Africa											
Oceania	Egypt	Al-Herrawy et al. ^a	2016	Fecal	PCR	SINTF/SINTR and SSU-rRNA	108	23	14 (unknown)	ı	19	6
	Oceania											
Australia Zhang et al. 2019 Fecal Nested-PCR ITS 342 15 (PtEb IX(9)-D(5)-VIC_dog1	Australia	Zhang et al.	2019	Fecal	Nested-PCR	ITS	342	15	15 (PtEb IX(9)-D(5)-VIC_dog1(1))	ı	ı	10

datasets (2515 animals) in Asia, nine datasets (886 animals) in Europe, one dataset (108 animals) in Africa, one dataset (120 animals) in America, and one dataset (342 animals) in Oceania. The countries with the highest number of published reports were China (five studies), Iran (three studies), and Spain (three studies). PCRbased methods were used in all molecular studies. Of the 23 included datasets, E. bieneusi (21/23; 91.30% studies), Enc. cuniculi (4/23; 17.39% studies), and Enc. intestinalis (3/23; 13.04% studies) had the highest number of reports (Table 1). As shown in the Table 1, the internal transcribed spacer (ITS) gene was used to determine the genotypes of E. bieneusi (17/23 datasets; 73.91%). In this regard, the PtEb IX (10 studies) and the D (eight studies) genotypes of E. bieneusi were the frequently reported genotypes (Table 1). The other reported E. bieneusi genotypes are shown in Table 1. Nevertheless, genotyping was not performed in six studies, because they used only the small subunit ribosomal RNA (SSU-rRNA) gene (Table 1). The pooled molecular prevalence of microsporidia infection in dogs thought to be 8.4% (95% CI, 6.1-11.5%; 329/3971) (Supplementary Figure 1). According to the identified species, the prevalences were 11.6% (95% CI: 6.7–19.2%) for *Enc. intestinalis* (Supplementary Figure 2), 6.5% (95% CI: 4.9-8.7%) for E. bieneusi (Fig. 2), and 4.5% (95% CI: 1.1-16.5%) for Enc. cuniculi (Supplementary Figure 3). In the subgroup analysis regarding continents, the highest pooled prevalence was observed in Africa 21.3%

(95% CI, 14.6–30%) followed by Europe 8.2% (95% CI, 5–13.2%), Asia 7.7% (95% CI, 4.6–12.5%), America 15% (95% CI, 9.7–22.6%), and Oceania 4.4% (95% CI, 2.7–7.1%) (Table 2). It should be noted that only one study has been conducted in America, Africa, and Oceania continents. In addition, the prevalence of microsporidia based on countries is categorized in Table 2.

The results based on serological detection techniques

A total of 1703 dogs from 9 datasets were evaluated for microsporidia sero-prevalence in dogs (Table 3). In this review, the ELISA (enzyme-linked immunosorbent assay) method was used in most of the datasets (n = 4), followed by IFA (immunofluorescence assay) method (n = 3), and DAT (direct agglutination test) method (n = 2). The included datasets represented seven different countries (i.e., three datasets from Slovakia, one dataset from Norway, one dataset from the USA, one dataset from Brazil, one dataset from the USA, one dataset from Japan, and one dataset from Egypt). The pooled sero-prevalence of microsporidia in dogs was thought to be 20.9% (95% CI, 14.6–29%) (Supplementary Figure 4).

The results based on microscopic methods

A total of five datasets from four different countries that used microscopic methods were included in the systematic review and meta-analysis; although in two studies,

Continents/countries	Datasets (n)	Sample size (n)	Infected (n)	Pooled prevalence % (95% CI)
Global	23	3971	329	8.4 (6.1–11.5)
Asia	11	2515	195	7.7 (4.6–12.5)
China	5	1441	130	8.6 (5.5–13.4)
Iran	3	192	37	13.7 (3.5–40.9)
Japan	2	676	28	4.2 (2.9–6)
Thailand	1	206	0	0
Europe	9	886	78	8.2 (5–13.2)
Spain	3	327	18	6.4 (0.9–33.5)
Portugal	2	94	6	6.6 (3–13.8)
Poland	2	147	10	6.8 (3.7–12.2)
Switzerland	1	36	3	8.3 (2.7–22.9)
Turkey	1	282	41	14.5 (10.9–19.2)
America	1	120	18	15 (9.7–22.6)
Colombia	1	120	18	15 (9.7–22.6)
Africa	1	108	23	21.3 (14.6–30)
Egypt	1	108	23	21.3 (14.6–30)
Oceania	1	342	15	4.4 (2.7–7.1)
Australia	1	342	15	4.4 (2.7–7.1)

Table 2 Subgroup analysis of continents and countries based on molecular methods in dogs

microscopy and coproantigen methods were used, the reported prevalence rates were same (Table 4). As shown in the Table 4, no countries were available for America and Oceania continents. The techniques used for this diagnostic method are listed in Table 4. The pooled prevalence of microsporidia in dogs (from five datasets including 355 dogs) was 23.1% (95% CI, 13.5–36.8%) (Supplementary Figure 5).

Confounding factors

With regard to the type of dogs, infection rates were estimated to be 16% (95% CI, 10.4–23.8%) in unknown dogs, 12.8% (95% CI, 8.2–19.4%) in stray dogs, and 11.2% (95% CI, 7.9–15.8%) in pet (domesticated) dogs (Table 5 and Supplementary Table 1). Male dogs and age > 12 months had a higher infection rate; however, these were not statistically significant (Table 5 and Supplementary Table 2).

Discussion

Over the years, zoonotic transmission of various species of microsporidia and the role of animals as reservoir for human infection are important issues in medical and veterinary practices [57, 58]. Dogs are considered one of the potential reservoirs for human-infecting microsporidia. According to our results, the prevalence of infection in the microscopic, serological, and molecular methods was estimated at 23.1%, 20.9%, and 8.4%, respectively. One of the most important reasons for the difference in prevalence is that each of the studied methods has its

Table 3 All the studies investigating	the alobal	prevalence of	microsporidia in doc	as according to	serological	methods
---------------------------------------	------------	---------------	----------------------	-----------------	-------------	---------

		5 5		, ,	9	9	
First author	Publication year	Country	Type of sample	Diagnostic methods	Sample size	Infected	Quality assessment
Stefkovic	2001	Slovakia	Serum	IFA	178	53	7
Akerstedt	2003	Norway	Serum	IFA	237	0	10
Halanova et al.	2003	Slovakia	Serum	IFA	193	73	10
Lindsay et al. ^a	2009	Brazil	Serum	DAT	113	27	10
Lindsay et al. ^a	2009	Colombia	Serum	DAT	254	19	10
Malcekova et al.	2010	Slovakia	Serum	ELISA	111	17	10
Sasaki et al.	2011	Japan	Serum	ELISA and WB	472	103	10
Cray and Rivas	2013	USA	Serum	ELISA	125	27	9
Abu-Akkada et al.	2015	Egypt	Serum	ELISA	20	8	8

IFA immunofluorescence assay, DAT direct agglutination test, ELISA Enzyme-linked immunosorbent assay, WB western blot

^aA study including two datasets, based on the countries

uality assessment

Table 4 All the studies investigating the global prevalence of microsporidia in dogs according to microscopy or coproantigens detection methods

MTS modified trichrome staining, IFA immunofluorescence assay for coproantigens survey, WS Weber's staining

^aA study including two datasets, based on the diagnostic methods (molecular and microscopical)

^bMTS and IFA: both methods reported the same prevalence

^cMultiple staining: Giemsa, quick-hot Gram-chromotrope, Weber-green modified trichrome, Ryan-blue modified trichrome, and Calcofluor white stains

own sensitivity and specificity [59, 60]. Traditionally, light microscopy using specific staining techniques is one of the ways to diagnose microsporidia infection [61]. However, this method is difficult and needs a wellexperienced person due to its similarity to bacteria or yeasts in stool samples [31, 62]. In the current study, the results of the microscopic prevalence are higher than the other two methods, which may be due to misdiagnosis with other elements and microorganisms. Nevertheless, nowadays molecular techniques are considered the gold standard for detection and differentiation of microsporidia at the species/genotype levels [63, 64]. The main advantage of molecular methods is higher sensitivity and specificity, along with easier interpretation [65, 66]. In this regard, the pooled prevalence obtained by molecular methods (8.4%) can be considered as "true" prevalence. On the other hand, although serological techniques (i.e., DAT, IFA, and ELISA) are more sensitive than the microscopic methods, high costs and false-positive reactions are considered disadvantages. In addition, there is no reliable serological method for detection of E. bieneusi [36, 67].

According to the molecular analysis, *E. bieneusi* is a complex species with numerous genotypes, diverse host spectrum and pathogenicity, and wide distribution [68–70]. The genetic data on *E. bieneusi* diversity rely almost exclusively on the analysis of the ITS region, which provides valuable information about the transmission and pathogenic potential of this parasite [70]. As the

molecular results of this review showed, most of the reports were related to E. bieneusi the genotypes PtEb IX and D. In this regard, the genotype PtEb IX, a dogspecific genotype, could have an exclusive dog-to-dog transmission that may cause some gastrointestinal disorders in dogs [12, 71]. As shown in Table 1, zoonotic transmission between dogs and humans is possible for the genotypes D, A, Peru 5, Peru 8, and type IV that most of these genotypes have been reported in immunocompromised individuals [5, 70, 72–75]. This finding proposed that dogs and humans can either infect each other or be infected from the same environmental sources (i.e., water sources and vegetables). However, more samples from these animals and humans should be genotyped to confirm the zoonotic transmission of these genotypes.

According to formal reports, the approximate population of pet and stray dogs has been estimated at 471 million and 200 million worldwide, respectively [76] (https://www.statista.com/statistics/1044386/dog-andcat-pet-population-worldwide/) (https://www.npr.org/2 017/12/29/574598877/no-easy-answer-to-growing-number-of-stray-dogs-in-the-u-s-advocate-says). In this regard, the top 10 countries with the largest population of dogs include the USA, Brazil, China, Russia, Japan, Philippines, India, Argentina, UK, and France (https:// www.mapsofworld.com/world-top-ten/countries-withmost-pet-dog-population.html). In this review, most studies have been conducted in developed countries,

 Table 5 Subgroup analysis of animal type, age and gender in dogs

Variables		Sample size (<i>n</i>)	Infected (n)	Pooled prevalence % (95% Cl)	Odds ratio (OR) (95% CI)
Type of dogs	Pet (domestic) dogs	2847	287	11.2 (7.9–15.8)	-
	Stray dogs	917	126	12.8 (8.2–19.4)	
	Unknown	2083	336	16 (10.4–23.8)	
Age	≤ 12 months	339	22	8.3 (2.8–21.9)	0.76 (0.23–2.48)
	> 12 months	1177	98	10.5 (6.2–17)	
Gender	Male	783	104	13.8 (9.2–20.1)	1.08 (0.74–1.59)
	Female	569	62	11.9 (7.9–17.5)	

especially European countries, where laboratory tools are easily accessible compared to developing countries. Therefore, some key countries (countries with the highest number of dogs) have few or no studies, and the need for further studies and more attention to microsporidia infection in dogs in these countries is emphasized.

The results of this meta-analysis showed that the prevalence of microsporidia infection in stray dogs were higher than that in pet (domesticated) dogs. Since stray dogs are freely scattered in the environment and easily access various environmental sources, they can be considered an important reservoir of microsporidia. As a result, it is recommended that health officials and health policymakers provide health strategies to prevent stray dogs from entering urban and rural areas in order to control infections.

In the current meta-analyses, we observed a higher microsporidia prevalence in dogs aged > 12 months and male dogs, but these were not statistically significant. One of the reasons for the higher prevalence of the infection in older age can be related to the higher risk of exposure to microsporidia.

As in our previous meta-analysis studies [19, 77, 78], the strengths of this study include the rigorous methodology, the comprehensive literature search in four international databases, the large total sample size, and analysis of several subgroups. Moreover, this study has some limitations and the results presented here should be interpreted with regard to these limitations. Limitations compose inclusion of reports with a lack of information on age, gender, symptoms, and risk factors; failed online registration (PROSPERO) due to the data were already extracted, some reports with low sample size, variations in the sensitivity and specificity of diagnostic methods, and the possibility of missing some studies during search strategy. Because of these limitations, it should be noted that our results may not reflect the true prevalence, and the reported numbers are apparent prevalence. Nevertheless, we believe what we report here is very close to true microsporidia prevalence in dogs from a global perspective.

Conclusion

We have found that there is a high burden of microsporidia infection in dogs. Moreover, our results have shown that *E. bieneusi* the genotypes PtEb IX and D are the common species/genotypes in dogs. These data should be taken into consideration by the health authorities, physicians, veterinarians, and dog's owners. Furthermore, this study signifies the importance of periodical monitoring of dogs for microsporidia. We suggest additional investigations to further clarify the prevalence and genetic diversity of microsporidiosis in the world to guide the development of appropriate public health interventions.

Supplementary information

Supplementary information accompanies this paper at https://doi.org/10. 1186/s41182-020-00265-0.

Additional file 1: Supplementary Figure 1. The pooled molecular prevalence of microsporidia infection in dogs. Supplementary Figure 2. The pooled molecular prevalence of *Enc. intestinalis* infection in dogs. Supplementary Figure 3. The pooled molecular prevalence of *Enc. cuniculi* infection in dogs. Supplementary Figure 4. The pooled sero-prevalence of microsporidia infection in dogs. Supplementary Figure 5. The pooled prevalence of microsporidia infection in dogs.

Additional file 2: Supplementary Table 1. Excel spreadsheet of extracted data from included studies for type of dogs.

Additional file 3: Supplementary Table 2. Excel spreadsheet of extracted data from included studies for age and gender of dogs.

Acknowledgements

The authors are very grateful to Dr. Hamed Mirjalali (Shahid Beheshti University of Medical Sciences, Tehran, Iran) for her kind assistance during the preparation of this manuscript.

Authors' contributions

All authors contributed to study design. AT contributed to all parts of the study. AT, SB, and SK contributed to study implementation. AT collaborated in the analysis and interpretation of data. AT collaborated in the manuscript writing and revision. All the authors commented on the drafts of the manuscript and approved the final version of the article.

Funding

This research did not receive any specific grant from funding agencies in public, commercial, or not-for-profit sectors.

Availability of data and materials

All data generated or analyzed during study are included in this systematic review and meta-analysis

Ethics approval and consent to participate

Not applicable

Not applicable

Consent for publication

Competing interests

None declared.

Received: 10 June 2020 Accepted: 24 August 2020 Published online: 04 September 2020

References

- Han B, Weiss LM. Microsporidia: Obligate intracellular pathogens within the fungal kingdom. Microbiol Spectr. 2017;5(2):97–113.
- Stentiford G, Becnel J, Weiss LM, Keeling P, Didier E, Bjornson S, Freeman M, Brown M, Roesel K, Sokolova Y. Microsporidia–emergent pathogens in the global food chain. Trend Parasitol. 2016;32(4):336–48.
- Brown MJ. Microsporidia: an emerging threat to bumblebees? Trend Parasitol. 2017;33(10):754–62.
- Henriques-Gil N, Haro M, Izquierdo F, Fenoy S, del Águila C. Phylogenetic approach to the variability of the microsporidian *Enterocytozoon bieneusi* and its implications for inter-and intrahost transmission. Appl Environ Microbiol. 2010;76(10):3333–42.
- Karimi K, Mirjalali H, Niyyati M, Haghighi A, Pourhoseingholi MA, Sharifdini M, Naderi N, Zali MR. Molecular epidemiology of *Enterocytozoon bieneusi* and *Encephalitozoon* sp., among immunocompromised and immunocompetent subjects in Iran. Microb Pathog. 2020;141:103988.
- Sak B, Kváč M, Kučerová Z, Květoňová D, Saková K. Latent microsporidial infection in immunocompetent individuals - a longitudinal study. PLoS Negl Trop Dis. 2011;5(5):e1162. https://doi.org/10.1371/journal.pntd.0001162.
- 7. Weber R, Kuster H, Visvesvara GS, Bryan RT, Schwartz DA, Lüthy R. Disseminated microsporidiosis due to *Encephalitozoon hellem*: pulmonary

colonization, microhematuria, and mild conjunctivitis in a patient with AIDS. Clin Infect Dis. 1993;17(3):415–9.

- Nooshadokht M, Sharifi I, Mohammadi MA, Pirestani M, Afgar A, Mahootchi A, Salari S. Intestinal microsporidiosis in Iran: infection in immunecompromised and immunocompetent patients. Curr med mycol. 2017;3(1): 30.
- Taghipour A, Tabarsi P, Sohrabi MR, Riahi SM, Rostami A, Mirjalali H, Malih N, Haghighi A. Frequency, associated factors and clinical symptoms of intestinal parasites among tuberculosis and non-tuberculosis groups in Iran: a comparative cross-sectional study. Trans R Soc Trop Med Hyg. 2019;113(5): 234–41.
- Didier E, Stovall M, Green L, Brindley P, Sestak K, Didier P. Epidemiology of microsporidiosis: sources and modes of transmission. Vet Parasitol. 2004; 126(1-2):145–66.
- 11. Javanmard E, Mirjalali H, Niyyati M, Jalilzadeh E, Seyed Tabaei SJ, Asadzadeh Aghdaei H, Nazemalhosseini-Mojarad E, Zali MR. Molecular and phylogenetic evidences of dispersion of human-infecting microsporidia to vegetable farms via irrigation with treated wastewater: One-year follow up. Int J Hyg Environ Health. 2018;221(4):642–51.
- 12. Santín M, Fayer R. Microsporidiosis: *Enterocytozoon bieneusi* in domesticated and wild animals. Res vet sci. 2011;90(3):363–71.
- Askari Z, Mirjalali H, Mohebali M, Zarei Z, Shojaei S, Rezaeian T, Rezaeian M. Molecular detection and identification of zoonotic microsporidia spore in fecal samples of some animals with close-contact to human. Iran J Parasitol. 2015;10(3):381.
- Coppinger R, Schneider R. The evolution of working dogs. In: Serpell J, editor. The domestic dog: its evolution, behaviour and interactions with people. New York: Cambridge University Press; 1995. p. 21–47.
- Beck AM, Meyers NM. Health enhancement and companion animal ownership. Annu Rev public health. 1996;17(1):247–57.
- Macpherson CN. Dogs, zoonoses and public health. Wallingford: CABI Publishing; 2012.
- Rostami A, Riahi SM, Hofmann A, Ma G, Wang T, Behniafar H, Taghipour A, Fakhri Y, Spotin A, Chang BC. Global prevalence of *Toxocara* infection in dogs. Adv Parasitol. 2020;109:561.
- Paul M, King L, Carlin EP. Zoonoses of people and their pets: a US perspective on significant pet-associated parasitic diseases. Trend Parasitol. 2010;26(4):153–4.
- Taghipour A, Olfatifar M, Bahadory S, Godfrey SS, Abdoli A, Khatami A, Javanmard E, Shahrivar F. The global prevalence of *Cryptosporidium* infection in dogs: a systematic review and meta-analysis. Vet Parasitol. 2020;281:109093.
- Kelly TR, Machalaba C, Karesh WB, Crook PZ, Gilardi K, Nziza J, Uhart MM, Robles EA, Saylors K, Joly DO. Implementing One Health approaches to confront emerging and re-emerging zoonotic disease threats: lessons from PREDICT. One Health Outlook. 2020;2(1):1–7.
- Atlas R, Rubin C, Maloy S, Daszak P, Colwell R, Hyde B. One health—attaining optimal health for people, animals, and the environment. Microbe. 2010;5(9):383–9.
- Tosoni A, Nebuloni M, Ferri A, Bonetto S, Antinori S, Scaglia M, Xiao L, Moura H, Visvesvara GS, Vago L. Disseminated microsporidiosis caused by *Encephalitozoon cuniculi* III (dog type) in an Italian AIDS patient: a retrospective study. Mod pathol. 2002;15(5):577–83.
- 23. Delrobaei M, Jamshidi S, Shayan P, Ebrahimzade E, Tamai IA, Rezaeian M, Mirjalali H. Molecular detection and genotyping of intestinal microsporidia from stray dogs in Iran. Iran J Parasitol. 2019;14(1):159.
- Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M, Shekelle P, Stewart LA. Preferred reporting items for systematic review and metaanalysis protocols (PRISMA-P) 2015 statement. Syst Rev. 2015;4(1):1.
- 25. Institute JB. Joanna Briggs Institute reviewers' manual: 2014 edition. Australia: The Joanna Briggs Institute; 2014.
- Hunter JP, Saratzis A, Sutton AJ, Boucher RH, Sayers RD, Bown MJ. In metaanalyses of proportion studies, funnel plots were found to be an inaccurate method of assessing publication bias. J Clin Epidemiol. 2014;67(8):897–903.
- Abu-Akkada SS, Ashmawy KI, Dweir AW. First detection of an ignored parasite, *Encephalitozoon cuniculi*, in different animal hosts in Egypt. Parasitol Res. 2015;114(3):843–50.
- Al-Herrawy AZ. Microsporidial spores in fecal samples of some domesticated animals living in Giza. Egypt. Iran J Parasitol. 2016;11(2):195.
- Mathis A, Breitenmoser A, Deplazes P. Detection of new *Enterocytozoon* genotypes in faecal samples of farm dogs and a cat. Parasite. 1999;6(2): 189–93.

- Stefkovic M, Valencakova A, Balent P, Maslej P, Halanova M. A study on antibody prevalence due to microsporidian *Encephalitozoon cuniculi* in dogs (*Canis familiaris*) using indirect immunofluorescence. Folia Vete (Slovak Republic). 2001:343–50.
- Lores B, Del Aguila C, Arias C. *Enterocytozoon bieneusi* (microsporidia) in faecal samples from domestic animals from Galicia. Spain. Mem Inst Oswaldo Cruz. 2002;97(7):941–5.
- Åkerstedt J. Serological investigation of canine encephalitozoonosis in Norway. Parasitol Res. 2002;89(1):49–52.
- Halanova M, Cislakova L, Valencakova A, Balent P, Adam J, Travnicek M. Serological screening of occurrence of antibodies to *Encephalitozoon cuniculi* in humans and animals in eastern Slovakia. Ann Agric Environ Med. 2003;10(1):117–20.
- Lobo ML, Teles A, Da Cunha MB, Henriques J, Lourenço AM, Antunes F, Matos O. Microsporidia detection in stools from pets and animals from the zoo in Portugal: a preliminary study. J Eukaryot Microbiol. 2003;50(6):581–2.
- Matos O, Lobo ML, Teles A, Antunes F. Is microsporidial infection in animals a potential source for human microsporidiosis. Southeast Asian J Trop Med Public Health. 2004;35:48–53.
- Malčeková B, Halánová M, Sulínová Z, Molnár L, Ravaszová P, Adam J, Halán M, Valocký I, Baranovič M. Seroprevalence of antibodies to *Encephalitozoon cuniculi* and *Encephalitozoon intestinalis* in humans and animals. Res Vet Sci. 2010;89(3):358–61.
- Galván-Díaz AL, Magnet A, Fenoy S, Henriques-Gil N, Haro M, Gordo FP, Miro G, del Aguila C, Izquierdo F. Microsporidia detection and genotyping study of human pathogenic *E. bieneusi* in animals from Spain. PLoS One. 2014;9(3):e106017. https://doi.org/10.1371/journal.pone.0106017.
- Piekarska J, Kicia M, Wesołowska M, Kopacz Ż, Gorczykowski M, Szczepankiewicz B, Kváč M, Sak B. Zoonotic microsporidia in dogs and cats in Poland. Vet Parasitol. 2017;246:108–11.
- Pekmezci D, Pekmezci GZ, Yildirim A, Duzlu O, Inci A. Molecular detection of zoonotic microsporidia in domestic cats in Turkey: a preliminary study. Acta Parasitol. 2019;64(1):13–8.
- Dashti A, Santín M, Cano L, de Lucio A, Bailo B, de Mingo MH, Köster PC, Fernández-Basterra JA, Aramburu-Aguirre J, López-Molina N. Occurrence and genetic diversity of *Enterocytozoon bieneusi* (Microsporidia) in owned and sheltered dogs and cats in Northern Spain. Parasitol Res. 2019;118(10): 2979–87.
- 41. Abe N, Kimata I, Iseki M. Molecular evidence of *Enterocytozoon bieneusi* in Japan. J Vet Med Sci. 2009;71(2):217–9.
- Zhang X, Wang Z, Su Y, Liang X, Sun X, Peng S, Lu H, Jiang N, Yin J, Xiang M. Identification and genotyping of *Enterocytozoon bieneusi* in China. J Clin Microbiol. 2011;49(5):2006–8.
- Jamshidi S, Tabrizi AS, Bahrami M, Momtaz H. Microsporidia in household dogs and cats in Iran; a zoonotic concern. Vet Parasitol. 2012;185(2-4):121–3.
- Karim MR, Dong H, Yu F, Jian F, Zhang L, Wang R, Zhang S, Rume FI, Ning C, Xiao L. Genetic diversity in *Enterocytozoon bieneusi* isolates from dogs and cats in China: host specificity and public health implications. J Clin Microbiol. 2014;52(9):3297–302.
- Li W, Li Y, Song M, Lu Y, Yang J, Tao W, Jiang Y, Wan Q, Zhang S, Xiao L. Prevalence and genetic characteristics of *Cryptosporidium*, *Enterocytozoon bieneusi* and *Giardia duodenalis* in cats and dogs in Heilongjiang province. China. Vet Parasitol. 2015;208(3-4):125–34.
- Xu H, Jin Y, Wu W, Li P, Wang L, Li N, Feng Y, Xiao L. Genotypes of Cryptosporidium spp., Enterocytozoon bieneusi and Giardia duodenalis in dogs and cats in Shanghai, China. Parasites Vectors. 2016;9(1):121.
- Wen-Chao L, Jie Q, Kai W, You-Fang G. Genotypes of *Enterocytozoon* bieneusi in dogs and cats in eastern China. Iran J Parasitol. 2018;13(3):457.
- Phrompraphai T, Itoh N, lijima Y, Ito Y, Kimura Y. Molecular detection and genotyping of *Enterocytozoon bieneusi* in family pet dogs obtained from different routes in Japan. Parasitol Int. 2019;70:86–8.
- Lindsay DS, Goodwin DG, Zajac AM, Cortés-Vecino J, Gennar S, Rosypal AC, Dubey J. Serological survey for antibodies to *Encephalitozoon cuniculi* in ownerless dogs from urban areas of Brazil and Colombia. J Parasitol. 2009; 95(3):760–3.
- Cray C, Rivas Y. Seroprevalence of *Encephalitozoon cuniculi* in dogs in the United States. J Parasitol. 2013;99(1):153–4.
- Zhang Y, Koehler AV, Wang T, Cunliffe D, Gasser RB. *Enterocytozoon bieneusi* genotypes in cats and dogs in Victoria. Australia. BMC Microbiol. 2019;19(1):183.
- 52. Santín M, Vecino JAC, Fayer R. *Enterocytozoon bieneusi* genotypes in dogs in Bogota. Colombia. Am J Trop Med Hyg. 2008;79(2):215–7.

- Piekarska J, Kicia M, Wesolowska M, Kopacz Z, Gorczykowski M, Sobieraj B, Kvac M, Sak B. Human-pathogenic microsporidia in household dogs and cats in Wroclaw (Poland). Ann Parasitol. 2016;62:124.
- Mori H, Mahittikorn A, Thammasonthijarern N, Chaisiri K, Rojekittikhun W, Sukthana Y. Presence of zoonotic *Enterocytozoon bieneusi* in cats in a temple in central Thailand. Vet Parasitol. 2013;197(3-4):696–701.
- Al-Sadi H, Al-Mahmood S. Microsporidial infection in some domestic and laboratory animals in Iraq. Int J Basic Appl Med Sci. 2013;3(3):78–91.
- Sasaki M, Yamazaki A, Haraguchi A, Tatsumi M, Ishida K, Ikadai H. Serological survey of *Encephalitozoon cuniculi* infection in Japanese dogs. J Parasitol. 2011;97(1):167–9.
- Mathis A, Weber R, Deplazes P. Zoonotic potential of the microsporidia. Clin Microbiol Rev. 2005;18(3):423–45.
- Javanmard E, Nemati S, Sharifdini M, Rostami A, Mirjalali H, Zali MR. The first report and molecular analysis of *Enterocytozoon bieneusi* from raccoon (*Procyon lotor*) in North of Iran. J Eukaryot Microbiol. 2020;67(3):359–68.
- Garcia LS. Laboratory identification of the microsporidia. J Clin Microbiol. 2002;40(6):1892–901.
- Franzen C, Müller A. Microsporidiosis: human diseases and diagnosis. Microb Infect. 2001;3(5):389–400.
- Didier ES, Orenstein JM, Aldras A, Bertucci D, Rogers LB, Janney FA. Comparison of three staining methods for detecting microsporidia in fluids. J Clin Microbiol. 1995;33(12):3138–45.
- Field A, Marriott D, Hing M. The Warthin-Starry stain in the diagnosis of small intestinal microsporidiosis in HIV-infected patients. Folia Parasitol (Praha). 1993;40(4):261–6.
- Wang S-N, Sun Y, Zhou H-H, Lu G, Qi M, Liu W-S, Zhao W. Prevalence and genotypic identification of *Cryptosporidium* spp. and *Enterocytozoon bieneusi* in captive Asiatic black bears (Ursus thibetanus) in Heilongjiang and Fujian provinces of China. BMC Vet Res. 2020;16(1):1–7.
- Sulaiman IM, Fayer R, Yang C, Santin M, Matos O, Xiao L. Molecular characterization of *Enterocytozoon bieneusi* in cattle indicates that only some isolates have zoonotic potential. Parasitol Res. 2004;92(4):328–34.
- 65. Morio F, Poirier P, Le Govic Y, Laude A, Valot S, Desoubeaux G, Argy N, Nourrisson C, Pomares C, Machouart M. Assessment of the first commercial multiplex PCR kit (ParaGENIE Crypto-Micro Real-Time PCR) for the detection of *Cryptosporidium* spp., *Enterocytozoon bieneusi*, and Encephalitozoon intestinalis from fecal samples. Diag Microbiol Infect Dis. 2019;95(1):34–7.
- 66. Ghoyounchi R, Mahami-Oskouei M, Rezamand A, Spotin A, Aminisani N, Nami S, Pirestani M, Berahmat R, Madadi S. Molecular phylodiagnosis of *Enterocytozoon bieneusi* and *Encephalitozoon intestinalis* in children with cancer: microsporidia in malignancies as an emerging opportunistic infection. Acta Parasitol. 2019;64(1):103–11.
- Ashmawy K, Abuakkada S, Awad A. Seroprevalence of antibodies to Encephalitozoon cuniculi and Toxoplasma gondii in farmed domestic rabbits in Eqypt. Zoonoses Public Health. 2011;58(5):357–64.
- Didier ES. Microsporidiosis: an emerging and opportunistic infection in humans and animals. Acta Trop. 2005;94(1):61–76.
- Matos O, Lobo ML, Xiao L. Epidemiology of *Enterocytozoon bieneusi* infection in humans. J Parasitol Res. 2012;2012:1–19.
- Thellier M, Breton J. *Enterocytozoon bieneusi* in human and animals, focus on laboratory identification and molecular epidemiology. EDP Sciences. 2008. p. 349–58.
- Santin M, Fayer R. Enterocytozoon bieneusi genotype nomenclature based on the internal transcribed spacer sequence: a consensus. J Eukaryot Microbiol. 2009;56(1):34–8.
- Sulaiman IM, Bern C, Gilman R, Cama V, Kawai V, Vargas D, Ticona E, Vivar A, Lxiao L. A molecular biologic study of *Enterocytozoon bieneusi* in HIVinfected patients in Lima, Peru. J Eukaryot Microbiol. 2003;50:591–6.
- Liguory O, Sarfati C, Derouin F, Molina J-M. Evidence of different Enterocytozoon bieneusi genotypes in patients with and without human immunodeficiency virus infection. J Clin Microbiol. 2001;39(7):2672–4.
- Wang L, Zhang H, Zhao X, Zhang L, Zhang G, Guo M, Liu L, Feng Y, Xiao L. Zoonotic *Cryptosporidium* species and *Enterocytozoon bieneusi* genotypes in HIV-positive patients on antiretroviral therapy. J Clin Microbiol. 2013;51(2): 557–63.
- Mirjalali H, Mirhendi H, Meamar AR, Mohebali M, Askari Z, Mirsamadi ES, Rezaeian M. Genotyping and molecular analysis of *Enterocytozoon bieneusi* isolated from immunocompromised patients in Iran. Infect Genet Evol. 2015;36:244–9.

- Lyu P. Proposal on solutions to stray dog problem in American cities. J Pol Sci Public Aff. 2015;3:175.
- Taghipour A, Rostami A, Sepidarkish M, Ghaffarifar F. Is Ascaris lumbricoides a risk factor for development of asthma? A systematic review and metaanalysis. Microb Pathog. 2020;142:104099.
- Taghipour A, Mosadegh M, Kheirollahzadeh F, Olfatifar M, Safari H, Nasiri MJ, Fathi A, Badri M, Dogaheh HP, Azimi T. Are intestinal helminthsplaying a positive role in tuberculosis risk? A systematic review and meta-analysis. PloS one. 2019;14(10):e0223722. https://doi.org/10.1371/journal.pone. 0223722.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ready to submit your research? Choose BMC and benefit from:

- fast, convenient online submission
- · thorough peer review by experienced researchers in your field
- rapid publication on acceptance
- support for research data, including large and complex data types
- gold Open Access which fosters wider collaboration and increased citations
- maximum visibility for your research: over 100M website views per year

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

