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Abstract 

Background Artificial intelligence-based computer-aided detection (AI–CAD) for tuberculosis (TB) has become com-
mercially available and several studies have been conducted to evaluate the performance of AI–CAD for pulmonary 
tuberculosis (TB) in clinical settings. However, little is known about its applicability to community-based active case-
finding (ACF) for TB.

Methods We analysed an anonymized data set obtained from a community-based ACF in Cambodia, targeting per-
sons aged 55 years or over, persons with any TB symptoms, such as chronic cough, and persons at risk of TB, includ-
ing household contacts. All of the participants in the ACF were screened by chest radiography (CXR) by Cambodian 
doctors, followed by Xpert test when they were eligible for sputum examination. Interpretation by an experienced 
chest physician and abnormality scoring by a newly developed AI–CAD were retrospectively conducted for the CXR 
images. With a reference of Xpert-positive TB or human interpretations, receiver operating characteristic (ROC) curves 
were drawn to evaluate the AI–CAD performance by area under the ROC curve (AUROC). In addition, its applicability 
to community-based ACFs in Cambodia was examined.

Results TB scores of the AI–CAD were significantly associated with the CXR classifications as indicated by the sever-
ity of TB disease, and its AUROC as the bacteriological reference was 0.86 (95% confidence interval 0.83–0.89). Using 
a threshold for triage purposes, the human reading and bacteriological examination needed fell to 21% and 15%, 
respectively, detecting 95% of Xpert-positive TB in ACF. For screening purposes, we could detect 98% of Xpert-posi-
tive TB cases.

Conclusions AI–CAD is applicable to community-based ACF in high TB burden settings, where experienced human 
readers for CXR images are scarce. The use of AI–CAD in developing countries has the potential to expand CXR 
screening in community-based ACFs, with a substantial decrease in the workload on human readers and laboratory 
labour. Further studies are needed to generalize the results to other countries by increasing the sample size and com-
paring the AI–CAD performance with that of more human readers.
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Introduction
Tuberculosis (TB) is a health-threatening infectious dis-
ease, with an estimated 10.6 million incident cases and 
1.6 million deaths, including HIV-positive people per 
year worldwide [1]. To tackle this disease, the World 
Health Organization (WHO) announced the End TB 
Strategy [2] which defines targets to reduce incidence 
by 90% and TB deaths by 95% by 2035. In addition, the 
United Nations General Assembly held its first-ever 
high-level meeting on TB in 2018, and adopted a politi-
cal declaration of 40 million treatments and 30 million 
TB preventive treatments for 5 years for an urgent global 
response to a global epidemic [3]. Therefore, implemen-
tation of evidence-based strategies that can lead to early 
case detection, proper treatment, and resulting reduction 
of TB transmission is required.

Despite these global efforts, there was a decrease of 
18% from 7.1 million to 5.8 million in case notifications 
between 2019 and 2020 because of the COVID-19 pan-
demic, and a partial recovery to 6.4 million in 2021, while 
the declining trends of TB deaths since 2005 inversely 
increased to the level of 2017 [1]. Therefore, actions to 
mitigate and reverse the impact of the COVID-19 pan-
demic on TB are urgently needed.

Chest radiography (CXR) for the diagnosis or screening 
of pulmonary TB has been limited by modest specific-
ity, high inter- and intrareader differences in interpreta-
tion, and suboptimal quality images in many developing 
countries [4, 5]. Bacteriological examinations for sputum 
have been recommended, as represented by the directly 
observed treatment, short-course (DOTS) strategy [6]. 
After the first national TB prevalence survey in Cambo-
dia [7], where CXR was used for screening purposes for 
eligibility for sputum examination, prevalence surveys in 
a standardised manner were carried out in many coun-
tries with high TB burdens to measure TB prevalence 
[8–10]. As a result, more attention has been given to both 
the role of CXR in TB case detection, and the concept 
of subclinical TB, i.e., the presence of persons without 
typical TB symptoms in the community [11, 12]. At the 
same time, researchers have begun to think of TB case 
detection by active case-finding (ACF), in which usually 
asymptomatic persons at high risk are actively screened 
for TB, as well as passive case-finding (PCF), in which 
symptomatic persons seek health care by themselves. 
However, the challenges in community-based ACF 

include the consumption of resources, such as labour 
and medical equipment, the requirement of large sample 
sizes, and its high cost, although it might be effective in 
changing TB epidemiology [13]. Thus, the WHO pub-
lished Systematic screening for active TB in 2013 [14], 
and Consolidated guidelines on TB in 2021 [15], which 
specifies targeted groups for ACF, and screening tools to 
be used, including artificial intelligence-based computer-
aided detection (AI–CAD).

During this period, remarkable progress in CXR equip-
ment was made. Replacing analogue images that needed 
film processing, computed radiography, and digital 
radiography, which enabled us to check an image soon 
after shooting, has been rapidly rolled out in develop-
ing countries. The digitalization of radiology has solved 
technical challenges, such as manual film processing, 
reagent replacement, and maintenance of film proces-
sors, and has brought high-quality images of CXR even 
in resource-limited settings. Furthermore, a handy CXR 
equipment called ultra-portable CXR [16] has made TB 
screening possible in communities located far from med-
ical facilities. The development of AI–CAD has paved the 
way to solve another major challenge: the interpretation 
of CXR images due to shortages of radiologists or chest 
physicians in developing countries.

Several studies on the performance of AI–CAD for 
TB [17–21] have shown that it is comparable to or bet-
ter than that of experienced medical doctors. However, 
these studies were mostly conducted for people with TB 
detected in PCF, and little is known about its applicability 
to community-based ACF for pulmonary TB [22–24].

Therefore, we examined the performance of a deep 
learning algorithm for TB detection (F-CAD) developed 
as a prototype by FUJIFILM Corporation, and its applica-
bility using a data set obtained from a community-based 
ACF in Cambodia, a country with a high TB burden.

Methods
Development of a deep learning algorithm for TB 
detection
For F‑CAD training
We formed a training set and a parameter tuning set 
by patientwise splitting of the following data sets: 1464 
CXRs with positive molecular tests for TB, 2914 CXRs 
with active TB in the radiology report, 3139 CXRs with 
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other abnormalities but negative TB in the radiology 
report and 6350 normal CXRs retrospectively collected 
from two diagnostic centers in India, and 60,326 CXRs 
with other abnormalities, such as atelectasis, pleural effu-
sion, or fibrosis pattern and 37,716 normal CXRs from 
the PadChest data set [25].

Development of the algorithm
The proposed AI–CAD consists of a two-stage pipe-
line. In the first stage, we segmented the lung and heart 
regions using a U-Net model [26] for the intensity and 
spatial normalization of an input CXR. We adjusted the 
mean and standard deviations of pixel values in the lung 
region to 0 and 1, respectively. Then, it was trimmed by 
the circumscribed rectangle of the lung and heart regions 
to reduce the variability in surrounding objects.

In the second stage, given a normalized CXR, a classifi-
cation score and a localization map were predicted using 
a CNN (convolutional neural network) model, which was 
the cascade of a DenseNet feature extractor [27] and a 
pixelwise localizer. The localizer consisted of a convolu-
tional layer and a global maximum pooling layer. Of note, 
the outputs from the two layers corresponded to the clas-
sification score and the localization map. Both the score 
and the localization map had values between 0 and 1, 
representing the probabilities of any active TB findings. 
In the training phase, the model was optimized using 
only image-level annotation and an entropy-based loss 
function. Data augmentation techniques, such as random 
resizing, cropping, horizontal flipping, rotation, Gaussian 
noise, and salt-and-pepper noise were applied to enhance 
the generalization performance. We applied energy spec-
trum modification and grid artefact injection to improve 
the robustness against software postprocessing algo-
rithms, such as dynamic compression and hardware fail-
ure. At the inference phase, the outputs from the three 
models being trained using three different hyperparam-
eters with test-time augmentation [28] were aggregated 
by averaging to produce the final prediction. For internal 
validation using two TB data sets publicly available from 
the National Library of Medicine [29], the area under the 
receiver operating characteristic (ROC) curve (AUROC) 
was 0.969 and 0.996 on the Shenzhen and Montgomery 
data sets, respectively.

Preparation of data set
Active case finding in Cambodia
The Cambodia Anti-Tuberculosis Association (CATA) 
conducted community-based ACFs for 88,316 partici-
pants in 32 operational districts from November 2018 
until November 2021. It targeted all persons aged 55 

years or older; persons with TB-related symptoms, such 
as cough, fever, and night sweats for more than 2 weeks; 
and persons at risk of TB, such as diabetes mellitus, 
household contacts, and past TB history [30]. All par-
ticipants excluding pregnant women and refusers were 
screened by a digital CXR. A doctor working for CATA 
screened the participants based on their CXR results: 
“normal”, “active TB”, “suspect TB”, “healed TB”, and 
“other lung diseases”. If the participant had a CXR sug-
gestive of “active TB”, “suspect TB”, or sometimes “healed 
TB”, a sputum specimen was taken on the spot for Xpert 
testing, which was performed on the ground by a mobile 
team. The participants’ data, Xpert test results, and CXRs 
in the form of DICOM (digital imaging and communica-
tions in medicine) images were stored and strictly man-
aged in computers.

Data selection and anonymisation
We prepared 8,519 CXR images and medical data of par-
ticipants in the ACFs at 13 districts randomly selected on 
a district basis from the 32 districts due to the subopti-
mal management of data storage, and anonymized them 
with an identifier number for analysis.

AI–CAD analysis and human reading by chest physician
Interpretation of the images by a chest physician who 
had more than 10 years of experience, and TB scor-
ing by F-CAD were retrospectively conducted. In doing 
so, neither the F-CAD developer nor the human reader 
was informed of the results of Xpert or CXR interpreta-
tion in Cambodia, and both were blinded to each other’s 
results. TB scores were provided by a continuous num-
ber between 0 and 1, which were more generally sug-
gestive of active TB when larger. The interpretations by 
the physician basically followed the five classifications in 
Cambodia, but “active TB” was further classified into two 
categories: “active TB with cavity” and “active TB without 
cavity”.

Performance evaluation and statistical analysis
To evaluate F-CAD performance, we used ROC curves 
and AUROCs [31] as the bacteriological reference of the 
Xpert results, and the radiological reference by human 
readings. In the analysis, “active TB with and without 
cavity” was defined as “abnormality strongly suggestive 
of TB”; “active TB and suspect TB” as “abnormality sug-
gestive of TB”; “active TB, suspect TB and healed TB” 
as “abnormality suggestive of any TB”; and “active TB, 
suspect TB, healed TB and other lung diseases” as “any 
abnormality in lung fields”. The ROC curves were made 
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for triage purposes in which possibly infectious cases 
are effectively selected with the reference of “abnormal-
ity suggestive of TB”, and for screening purposes in which 
suspected TB cases are widely selected with the refer-
ence of “any abnormality in lung fields”. The AUCs were 
calculated using the pROC package of R version 4.1.2 (R 
Foundation for Statistical Computing, Vienna, Austria), 
and DeLong methods [32]. We also examined precision–
recall curves (PRCs) [33], because the data set was imbal-
anced with a low Xpert positivity rate.

In addition, we examined whether F-CAD meets the 
target product profile (TPP) by the WHO [34]: 90% sen-
sitivity/70% specificity as minimal requirements, and 95% 
sensitivity/80% specificity as optimal requirements, and 
its applicability to community-based ACF in Cambodia 
using the data set in the study.

We presented TB scores as the medians with interquar-
tile ranges (IQRs) and used Mann–Whitney’s U test as a 
statistical test. The developer of F-CAD was not part of 
the study team and had no role in the study design, data 
collection, analysis, or interpretation of the results. This 
study was approved by the National Ethics Committee 
for Health Research, Cambodia.

Results
Demographic and clinical characteristics of persons 
screened with chest X‑ray
We analysed the final data set of 8,386 CXRs and medical 
data after excluding 133 CXRs because of 59 duplications 
and 74 without any matching medical data. Table 1 shows 
the demographic and clinical characteristics of persons 
screened with CXR; 5,584 (67% of the participants) were 
female, and 2,839 (34%) were 65 years or older. A total of 
5,202 (62%) had a cough for more than 2 weeks. The per-
centages of the participants with diabetes mellitus, posi-
tive HIV status, and smoking as TB risk were 5.3%, 0.5%, 
and 14%, respectively. A total of 1,145 (14%) had contacts 
of TB, and 993 (12%) had a past history of TB. Overall, 
1,371 (16%) were examined by Xpert on the ground. Of 
them, 130 (1.6% of the participants and 9.5% of the per-
sons examined by Xpert) were positive for Xpert.

Chest X‑ray reading and Xpert results
The results of human reading by the chest physician 
indicated many abnormal findings on CXR, as shown 
in Table 2, probably reflecting a past epidemic of TB in 
Cambodia and the participation of elderly individu-
als: 6,835 (82%) with normal CXR, 414 (5%) with active 
TB, 201 (2%) with suspected TB, 841 (10%) with healed 
TB, and 95 (1%) with other lung diseases. Of the “active 
TB” individuals, positive Xpert, negative Xpert, and not 

performed Xpert were 24%, 43%, and 33%, respectively. 
Of the “suspect TB”, positive Xpert, negative Xpert, and 
not performed Xpert were 5%, 49%, and 46%, respec-
tively. There were 17 Xpert-positive cases in “healed TB” 
and 3 in “other lung diseases”. No rifampicin-resistant TB 
was detected among the Xpert-positive TB cases.

Results of human reader and TB scores
The IQR of TB scores by classification of human read-
ings for CXR are shown in Fig.  1. The TB scores of 
F-CAD were significantly associated with the results of 
the human reader for CXR as indicated by the severity of 
TB disease: the median of “active TB with cavity”, “active 
TB without cavity”, “suspect TB”, “healed TB”, “other lung 
disease”, and “normal” was 0.99, 0.95, 0.91, 0.86, 0.66, and 
0.14, respectively.

Performance with the bacteriological reference by Xpert 
results
The ROC curve of TB scores with the bacteriological ref-
erence is shown in Fig. 2, as well as the sensitivities and 
specificities based on the classification by the human 
reader. The AUROC of F-CAD was 0.86 (95% confidence 
interval (CI) 0.83–0.89). When we compared the AUROC 
by age group, the AUROC for those aged 65 or older was 
significantly lower [0.80 (95% CI 0.73–0.80)] than that 
for those aged under 65 years [0.91 (95% CI 0.88–0.91)], 
although it was not shown in the figure. We plotted the 
sensitivities and specificities by the human reader based 
on “abnormality strongly suggestive of TB”, “abnormality 
suggestive of TB”, “abnormality suggestive of any TB”, and 
“any abnormality in lung fields” with 76%/85%, 84%/78%, 
97%/50%, and 99%/46%, respectively.

Figure  3 shows the PRC curves of TB scores with the 
bacteriological reference. It declined in a linear manner 
as the sensitivity increased, and reached a positive pre-
dictive value (PPV) of 0.1, which was obtained from 130 
divided by 1,371 as the lowest PPV. The area under the 
PRC (AUPRC) was 0.47. Sensitivities and PPVs by the 
human reader were 76%/36% for “abnormality strongly 
suggestive of TB”, 84%/28% for “abnormality suggestive of 
TB”, 97%/17% for “abnormality suggestive of any TB”, and 
99%/16% for “any abnormality in lung fields”.

Performance with the radiological reference by human 
readings
The AUROCs with the reference of “abnormality sugges-
tive of TB” as a triage purpose, and with the reference of 
“any abnormality in the lung fields” as a screening pur-
pose were 0.93 (95% CI 0.92–0.94), and 0.92 (95% CI 
0.91–0.93), respectively, as shown in Fig. 2. The AUPRCs 
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with the reference of “abnormality suggestive of TB” and 
with the reference of “any abnormality in the lung fields” 
shown in Fig.  3 were 0.52 and 0.83, respectively. The 
PPVs at 90% sensitivity were nearly 30% for triage pur-
poses, and more than 40% for screening purposes.

Performance against WHO’s target product profile 
by reference
The performance against the WHO’s TPP by reference 
is shown in Table  3. With the bacteriological reference, 

Table 1 Demographic and clinical characteristics of persons screed with chest X-ray

Xpert test Total

Positive (%) Negative (%) Not examined

N 130 (1.6) 1241 (14.8) 7015 (83.7) 8386 (100)

Sex

 Male 65 (2.3) 517 (18.5) 2220 (79.2) 2802 (100)

 Female 65 (1.2) 724 (13.0) 4795 (85.9) 5584 (100)

Age

 15–24 4 (2.0) 6 (3.0) 189 (95.0) 199 (100)

 25–34 6 (1.4) 20 (4.5) 415 (94.1) 441 (100)

 35–44 18 (2.2) 52 (6.4) 742 (91.4) 812 (100)

 45–54 22 (1.4) 165 (10.8) 1339 (87.7) 1526 (100)

 55–64 27 (1.1) 361 (14.3) 2133 (84.6) 2521 (100)

 65- 53 (1.9) 634 (22.3) 2152 (75.8) 2839 (100)

 Unknown 0 (0.0) 3 (6.3) 45 (93.8) 48 (100)

TB symptoms

 Cough (yes) 108 (2.1) 908 (17.5) 4186 (80.5) 5202 (100)

 (No) 22 (0.7) 333 (10.5) 2829 (88.9) 3184 (100)

 Fever (yes) 86 (1.9) 758 (16.3) 3800 (81.8) 4644 (100)

 (No) 44 (1.2) 483 (12.9) 3215 (85.9) 3742 (100)

 Night sweat (yes) 54 (1.3) 621 (15.2) 3402 (83.4) 4077 (100)

 (No) 76 (1.8) 620 (14.4) 3613 (83.8) 4309 (100)

 Weight loss (yes) 79 (2.2) 636 (17.5) 2919 (80.3) 3634 (100)

 (No) 51 (1.1) 605 (12.7) 4096 (86.2) 4752 (100)

 Lymph node swelling (yes) 4 (1.5) 26 (9.7) 239 (88.8) 269 (100)

 (No) 126 (1.6) 1215 (15.0) 6776 (83.5) 8117 (100)

Other risk factors

 Diabetes mellitus (yes) 9 (2.0) 64 (14.4) 372 (83.6) 445 (100)

 (No) 121 (1.5) 1177 (14.8) 6643 (83.7) 7941 (100)

 HIV (yes) 0 (0.0) 12 (30.8) 27 (69.2) 39 (100)

 (No or unknown) 130 (1.6) 1229 (14.7) 6988 (83.7) 8347 (100)

 Smoking (yes) 22 (1.9) 200 (16.8) 965 (81.3) 1187 (100)

 (No) 108 (1.5) 1041 (14.5) 6050 (84.0) 7199 (100)

 Family TB history (yes) 13 (1.4) 127 (14.0) 764 (84.5) 904 (100)

 (No) 117 (1.6) 1114 (14.9) 6251 (83.5) 7482 (100)

 TB contact (yes) 17 (1.5) 141 (12.3) 987 (86.2) 1145 (100)

 (No) 113 (1.6) 1100 (15.2) 6028 (83.2) 7241 (100)

 Past TB history (yes) 15 (1.5) 299 (30.1) 679 (68.4) 993 (100)

 (No) 115 (1.6) 942 (12.7) 6336 (85.7) 7393 (100)

Table 2 CXR reading by human reader and Xpert results

Results of CXR 
reading

Xpert Total

Positive Negative Not examined

Normal lung field 1 (0.0) 568 (8.3) 6266 (91.7) 6835 (100)

Active TB 99 (23.9) 179 (43.2) 136 (32.9) 414 (100)

Suspect TB 10 (5.0) 99 (49.3) 92 (45.8) 201 (100)

Healed TB 17 (2.0) 346 (41.1) 478 (56.8) 841 (100)

Other lung disease 3 (3.2) 49 (51.6) 43 (45.3) 95 (100)

Total 130 (1.6) 1241 (14.8) 7015 (83.7) 8386 (100)
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no sensitivity or specificity met the WHO’s TPP: 62% 
(95% CI 0.59–0.65) specificity at 90% sensitivity, and 85% 
(95% CI 0.85–0.91) sensitivity at 70% specificity. With the 
radiological reference of “abnormality suggestive of TB”, 
however, the corresponding sensitivities or specificities 
reached the targets: 84% (95% CI 0.84–0.85) specificity 
at 90% sensitivity and 96% (95% CI 0.95–0.98) sensitivity 
at 70% specificity. With the radiological reference of “any 
abnormality in the lung fields”, 75% (95% CI 0.74–0.76) 
specificity at 90% sensitivity reached the target; however, 
the lower margin of 91% (95% CI 0.90–0.93) sensitivity at 
70% specificity did not exceed 90%.

Performance set at 90% sensitivity for community‑based 
ACF
Given that we used a TB score by F-CAD as the threshold 
for triage purposes or screening purposes set at 90% sen-
sitivity, we examined how many CXRs by human reader 

and bacteriological examinations could be decreased in 
number, and how many cases with positive Xpert, with 
“abnormality suggestive of TB”, and with “any abnor-
mality in the lung fields” could be missed using F-CAD. 
A proposed algorithm for community-based ACF using 
both F-CAD and human reading in combination with 
Xpert test is shown in Fig. 4. As shown in Table 4, if we 
used a threshold of 0.5340 for triage purposes, the bacte-
riological examinations fell to 15% of the original number 
by the reduction to 21% of CXR to be interpreted, fol-
lowed by the exclusion of 524 normal CXRs by human 
reading. On the other hand, TB cases detected as “abnor-
mality suggestive of TB” and positive Xpert could be 
maintained at 90% and 96%, respectively. Similarly, if we 
used a threshold of 0.2835 for screening purposes, we 
could maintain TB cases detected as “abnormality sug-
gestive of TB” and positive Xpert at 97% and 98%, respec-
tively, while the bacteriological examinations fell to 17% 
in number by the reduction of CXRs by human reading 
to 37%, followed by the exclusion of the cases with nor-
mal CXRs.

Discussion
TB scores of F-CAD were significantly associated with 
the CXR classifications as indicated by the severity of TB 
disease. The AUROC as the bacteriological reference was 
0.86 (95% CI 0.83–0.89), which was similar to 0.82–0.94 
in other recent studies on the best 3 AI–CAD algorithms 
[19–21]. When we used a threshold for triage purposes at 
90% sensitivity as the radiological reference, human read-
ings and bacteriological examinations needed fell to 21% 
and 15%, respectively, maintaining 95% of Xpert-positive 
TB to be detected in ACF. Similarly, for screening pur-
poses, we could maintain 98% of Xpert-positive TB. The 

Fig. 1 Interquartile ranges of TB scores by classification of human readings for chest X-ray

Fig. 2 Performance of F-CAD and human reading
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Fig. 3 Precision Recall curve for F-CAD and human reading

Table 3 Performance of F-CAD against WHO’s Target Product Profile by reference

*Significantly over Target Product Profile

Reference Xpert results "abnormality suggestive 
of TB"

"any abnormality in the 
lung fields"

Sensitivity≧95 Actual sensitivity 0.954 (0.902–0.983) 0.951 (0.931–0.967) 0.950 (0.938–0.961)

TB score 0.72 0.36 0.15

Specificity (95%CI) 0.517 (0.488–0.545) 0.747 (0.737–0.757) 0.525 (0.513–0.537)

Sensitivity≧90 Actual sensitivity 0.900 (0.835–0.946) 0.901 (0.874–0.923) 0.900 (0.884–0.915)

TB score 0.88 0.53 0.28

Specificity (95%CI) 0.621 (0.594–0.648) 0.844 (0.835–0.852)* 0.750 (0.739–0.760)*

Specificity≧80 Actual specificity 0.800 (0.777–0.822) 0.800 (0.791–0.809) 0.800 (0.790–0.809)

TB score 0.97 0.44 0.34

Sensitivity (95%CI) 0.715 (0.630–0.791) 0.930 (0.907–0.949) 0.879 (0.862–0.895)

Specificity≧70 Actual specificity 0.700 (0.674–0.726) 0.700 (0.690–0.710) 0.700 (0.689–0.711)

TB score 0.93 0.31 0.25

Sensitivity (95%CI) 0.854 (0.854–0.910) 0.964 (0.946–0.977)* 0.914 (0.899–0.928)
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study suggested that the use of AI–CAD in develop-
ing countries has the potential to expand CXR screen-
ing for TB in community-based ACFs with a substantial 
decrease in the workload on human readers and labora-
tory labour.

Despite any effort to combat TB across the globe, 
an annual reduction in TB incidence rate before the 
COVID-19 pandemic was only 2.3% between 2018 and 
2019 [35], and the acceleration of reduction has been 
required towards ending TB. A recent study showed that 
systematic screening for TB based on symptom screening 
alone may not be sufficient to achieve a large reduction 

in TB prevalence over a period of a few years [36]. The 
active use of CXR equipped with AI–CAD in high TB 
burden countries can be a key to improving detection of 
cases with asymptomatic, subclinical TB as well as symp-
tomatic TB.

The F-CAD system can work on a laptop computer 
without an internet connection, and an ultra-portable 
CXR system, including a digital panel for X-ray detec-
tion can be operated by battery power in the field.

One of the strengths of the study is the use of real 
data obtained from community-based ACF for gen-
eral people in Cambodia with a high burden of TB. The 

Fig. 4 Proposed algorithm for community-based ACF

Table 4 Performance in triage purposes and screening purposes at sensitivity of 90%

*N of sputum exams = N of CXR selected—N of normal CXR by human reading

Purpose TB score as 
threshold

N of CXR 
selected (% of 
8,386)

N of sputum 
exams* (% of 
8,386)

N of Xpert‑
positive (% of 
130)

N of CXR with "abnormality 
suggestive of TB" (% of 615)

N of CXR with "any 
abnormality in the lung fields" 
(% of 1551)

Triage 0.5340 1770 (21.1) 1246 (14.9) 125 (96.2) 554 (90.1) 1246 (80.3)

Screening 0.2835 3107 (37.0) 1396 (16.6) 127 (97.7) 594 (96.6) 1396 (90.0)



Page 9 of 10Okada et al. Tropical Medicine and Health            (2024) 52:2  

study subjects were more likely to be asymptomatic or 
to have milder symptoms and more normal CXRs than 
those in clinical settings [37]. Most studies conducted 
on AI–CAD evaluation [17–21] used medical data from 
hospital patients with severe symptoms and high TB 
prevalence, and there are only a few studies for general 
populations in the community [22–24]. In addition, the 
AUROCs of F-CAD with the bacteriological reference 
were comparable to other CAD algorithms, and there-
fore, the conclusion from the study on the potentiality 
of AI–CAD use for community-based ACF is plausible, 
although further comparative studies are needed.

There are several limitations in the study. First, the 
quality of CXR images was challenging, because the 
shooting conditions might not have always been properly 
set. Some images had artefacts with belt-shaped patterns 
of stripes with light and shade, which might have affected 
the TB scores and human readings of the results. Second, 
because we used data obtained from the actual ACF for 
TB in the community, their bacteriological examina-
tions were limited to 16% of the participants who had 
been screened by CXR, and a few persons with positive 
Xpert might have been missed. However, we believe that 
the performance of AI–CAD should be evaluated using 
both radiological and bacteriological references, because 
CXR diagnosis or screening is to be performed based 
on the abnormality of CXR images. In fact, two national 
TB prevalence surveys in Cambodia [7, 38] showed that 
there were more TB cases with bacteriologically nega-
tive, but CXR suggestive of active TB, so called “minimal 
disease” [12] or “TB pathology” [39] in the community, 
than those with bacteriologically positive TB. Therefore, 
if we use a bacteriological reference only, the specificity 
becomes falsely low, and we cannot properly evaluate the 
CAD performance. In addition, we should consider the 
fact that there are falsely positive Xpert results among 
persons with past TB treatment history as well as falsely 
negative results below the lowest level of detection by 
Xpert because of the nature of polymerase chain reaction. 
Third, we compared F-CAD performance with only one 
fully experienced human reader in the study. However, 
the accuracy of the reader in this study was comparable 
to that of other readers in a study [20] with the bacterio-
logical reference; a sensitivity/specificity with “abnormal-
ity suggestive of TB” was 84/78% (95%CI 78–90/75–80%) 
in this study and 89/63% (95%CI 87–90/62–63%) in that 
study, and a sensitivity/specificity with “any abnormality 
in the lung field” was 99/46% (95%CI 97–100/43–48%) 
and 95/46% (95%CI 94–96/45–46%), respectively.

In conclusion, AI–CAD is applicable to community-
based ACF in high TB burden countries, where expe-
rienced human readers for CXR images are scarce. The 
study suggested that the use of AI–CAD in developing 

countries could expand CXR screening for TB for com-
munity-based ACFs with a substantial decrease in the 
workload on human readers and laboratory labour. 
Further studies are needed to generalize these results 
to other countries by increasing the participants being 
tested for bacteriological examination and comparing 
AI–CAD performance with that of more human readers.
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