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Abstract 

Dengue has broadened its global distribution substantially in the past two decades, and many endemic areas are 
experiencing increases in incidence. The Dominican Republic recently experienced its two largest outbreaks to date 
with 16,836 reported cases in 2015 and 20,123 reported cases in 2019. With continued increases in dengue transmis‑
sion, developing tools to better prepare healthcare systems and mosquito control agencies is of critical importance. 
Before such tools can be developed, however, we must first better understand potential drivers of dengue transmis‑
sion. To that end, we focus in this paper on determining relationships between climate variables and dengue trans‑
mission with an emphasis on eight provinces and the capital city of the Dominican Republic in the period 2015–2019. 
We present summary statistics for dengue cases, temperature, precipitation, and relative humidity in this period, and 
we conduct an analysis of correlated lags between climate variables and dengue cases as well as correlated lags 
among dengue cases in each of the nine locations. We find that the southwestern province of Barahona had the larg‑
est dengue incidence in both 2015 and 2019. Among all climate variables considered, lags between relative humidity 
variables and dengue cases were the most frequently correlated. We found that most locations had significant cor‑
relations with cases in other locations at lags of zero weeks. These results can be used to improve predictive models of 
dengue transmission in the country.
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Introduction
Global incidence of dengue fever has increased substan-
tially in recent decades, with the range of dengue expand-
ing from only nine countries before 1970 to at least 129 
countries today [1–4]. In addition to its rapid global 
spread, dengue outbreaks in endemic regions are result-
ing in increasingly larger numbers of cases and contribut-
ing to a growing burden on public health systems. Today, 
it is estimated that over 390 million people are at risk of 
contracting dengue [5]. Dengue is primarily distributed 
across regions of the world with tropical and subtropical 
climates, although in the past two decades, dengue cases 
have occurred with greater frequency in temperate zones 
as well [6–9]. In 2021, 1,254,648 cases and 436 deaths 
were reported in the Americas [10]. According to the 
Pan American Health Organization (PAHO) the coun-
tries in the Caribbean reporting the most cases of den-
gue between 2014 and 2021 are the Dominican Republic, 
Martinique, Guadeloupe, French Guiana, and Cuba, with 
the Dominican Republic having 60% more cases in that 
time as the country reporting the second highest number 
[10]. The Dominican Republic also reports the highest 
number of severe dengue cases and deaths in the Carib-
bean [10]. In 2019, the Dominican Republic experienced 
its largest outbreak to date with a 1145% increase in cases 
from 2018 [11]. The cumulative incidence in 2019 was 
194.85 cases per 100,000 people, which is a 142% increase 
from the average incidence between 2005 and 2014 [12, 
13].

With outbreaks becoming increasingly severe in the 
Dominican Republic and other regions, it is more imper-
ative than ever to understand drivers of epidemic den-
gue. Potential drivers of global spread of dengue include 
increases in urbanization, more frequent global travel, 
and changes in temperature and precipitation [14–16]. 
At local scales, transmission of dengue can also be a 
function of socioeconomic and demographic character-
istics, connectivity to other regions, human behavior, vol-
ume of tourism, and rates of migration [14–18]. Many of 
these variables play an important role in developing and 
sustaining an environment that is suitable for the vectors 
of dengue, Aedes aegypti and Aedes albopictus, which in 
turn amplifies risk of transmission [19–21].

Because there is an inherent delay between human 
cases of dengue resulting from the intermediate mosquito 
host and a serial interval of 15–17 days, early detection 
of new dengue outbreaks can be complicated [22, 23]. In 
the last decade, efforts have been made to improve early 
detection of dengue outbreaks by improving surveillance 
and warning [22, 24–26]. These early warning systems 
are mathematical and statistical models that integrate 
data to provide predictions for changes in dengue trans-
mission that may indicate outbreaks. Chief among these 

data are climate variables such as temperature, precipita-
tion, or humidity which are all positively correlated with 
Aedes mosquito populations and dengue transmission 
[22]. However, before such early warning systems can be 
developed, relationships between climate variables and 
dengue cases must be explored to determine which cli-
mate variables are most important to local and regional 
dengue transmission. Recently, Freitas et  al. thoroughly 
analyzed the 2019 dengue outbreak in the Dominican 
Republic and found that a model incorporating tempera-
ture and rainfall with delays of 2–5 weeks provided good 
predictions of dengue transmission [27]. This work marks 
an important first step in developing better predictive 
models for the country.

Herein, we aim to build upon this work by analyz-
ing dengue activity in the Dominican Republic between 
2015 and 2019 and exploring relationships between cli-
mate variables and dengue cases. We present descrip-
tive analysis of each data set used in the study along with 
analysis of correlations in lags between variables. We fur-
ther investigate correlations in lags between provinces in 
the Dominican Republic to understand potential move-
ment of dengue throughout the country. The work pre-
sented herein provides a foundation on which statistical 
and mathematical models can be constructed to further 
study drivers of previous outbreaks and to predict future 
outbreaks.

Materials and methods
Study site
This study was conducted in the Dominican Republic, a 
Caribbean country that occupies the eastern two-thirds 
of the Island of Hispaniola. The 2019 estimate of the 
population size of the Dominican Republic is 10,448,499 
people [27]. The country is divided geopolitically into 31 
provinces and Distrito Nacional (the capital city) [28].

The Dominican Republic has perhaps the most diverse 
climate of all of the Caribbean islands because of the 
presence of high mountains and abundant coastal regions 
[29]. Much of the country, however, has a tropical climate 
with mean annual temperatures ranging between 22 and 
31  °C [29–32]. Rainy seasons vary geographically with 
the northern part of the country experiencing heavier 
rain from November to January and much of the rest 
of the country having its rainy season May–November. 
Mean annual precipitation in the country ranges between 
400 mm in the southwest to more than 2200 mm in the 
mountain regions [29]. The majority of southern coastal 
regions experience a mean rainfall of around 1000  mm 
while northern coasts typically have a higher mean 
annual rainfall of 1600 mm or more [29].

In this work, we focus on nine provinces throughout 
the country. These nine were chosen because they are the 
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provinces for which we were able to obtain both mete-
orological and epidemiological data between 2015 and 
2019. The nine provinces included in this study are Bara-
hona, La Altagracia, La Romana, Monte Cristi, Puerto 
Plata, Samaná, Santiago, Santo Domingo, and Distrito 
Nacional (Fig. 1). The provinces cover each of the three 
major regions of the country: North (Monte Cristi, 
Puerto Plata, Santiago, Samaná), South (Barahona), and 
East/Southeast (Santo Domingo, Distrito Nacional, La 
Romana, La Altagracia). The nine provinces include 
6,295,775 people (2019 estimate), representing 60.78% of 
the total population of the country.

Data collection
Dengue cases
The number of weekly reported cases for the period 
January 2015 to December 2019 was provided by Sis-
tema Nacional de Vigilancia Epidemiológica de la 
Dirección General de Epidemiológica (Ministerio de 
Salud Pública). The epidemiological week was defined 
as Sunday to Saturday. Cases include suspected and 
laboratory-confirmed cases aggregated at the province 

level according to surveillance definitions [33]. Dengue 
Incidence Rate (DIR) was calculated using the number 
of new cases, divided by the local population each year, 
multiplied by 100,000 inhabitants. Figure 2a shows den-
gue incidence for the five years across the nine prov-
inces included in the study.

Meteorological data
Meteorological data were obtained by supplement-
ing official national data (from ONAMET) with data 
provided by the U.S. National Aeronautics and Space 
Administration (NASA). Previous studies have con-
firmed this approach for collecting data, especially 
where there are gaps in reliable data [24, 34]. We cal-
culated summary values (minimum, maximum, mean, 
sum) of meteorological parameters by epidemiologic 
weeks. Figure  2b–d show average weekly temperature, 
total weekly precipitation, and average weekly rela-
tive humidity for the 5 years across the nine provinces 
included in the study.

Fig. 1 Provinces of the Dominican Republic. Provinces at the focus of this study are highlighted in green
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Population data
We obtained population data from Oficina Nacional 
de Estadísticas (ONE) [27]. This data includes the total 
population and the population density for each prov-
ince (Table  1). Distrito Nacional has the highest pop-
ulation density, and Santo Domingo province has the 
highest population.

Statistical analysis
Summary statistics
We conducted a preliminary statistical analysis of epi-
demiological data to highlight changes in dengue cases 
across provinces and across years. We calculated sum-
mary statistics of dengue cases for the entire country 
each year. We focus much of our analysis of cases on the 
years 2015 and 2019, when large epidemics took place. 
Our initial findings support subsequent analysis at the 
province level to assess the association between explana-
tory variables and the distribution of the disease over 
space and time. We calculate dengue incidence in each 
province in 2015 and 2019 as well as descriptive statistics 
such as mean, maximum, minimum, and standard devia-
tion of meteorological variables for each province. The 
results were obtained by calculations in Microsoft Excel, 
through the Excel Data Analysis Tool. Maps with spatial 
data were generated by QGIS 3.16.6. These maps improve 
our understanding of dengue transmission in different 
regions and how transmission evolves spatially over time 
[35].

Correlated lags analysis We compared time series of 
dengue case data across provinces with climate data by 
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(e) minimum weekly temperature
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(f) maximum weekly temperature
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(b) total weekly precipitation (log
10

 scale)
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(c) average weekly relative humidity
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Fig. 2 Time series of epidemiological and meteorological metrics across the five years and nine provinces at the focus of this study. Provinces are 
arranged by latitude (northernmost to southernmost). a Dengue incidence per 100,000 people; b total weekly precipitation  (mm3; log scale); c 
average weekly relative humidity (%); (d–f) average, minimum, and maximum weekly temperature, respectively (°C)

Table 1 Demographic characteristics from provinces of the 
Dominican Republic included in this study, 2019

Data was obtained from ONE [27]

Province Population size Population density 
(individuals/km2)

Barahona 189,149 1160.28

La Altagracia 345,822 114.88

La Romana 270,166 1456.26

Monte Cristi 116,605 255.99

Puerto Plata 332,386 653.01

Samaná 111,217 130.27

Santiago 1,038,044 369.90

Santo Domingo 2,855,892 1059.03

Distrito Nacional 1,036,494 9924.30
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conducting an analysis of correlations of lags between 
data sets. We assume a unidirectional relationship 
between dengue cases and meteorological variables. We 
first implemented a standard prewhitening approach to 
remove any effects of autocorrelation within data sets [36]. 
We fit each time series data set to seasonal autoregressive 
integrated moving average (SARIMA) models. We cal-
culated cross-correlation functions between residuals of 
time series for different weekly summary data for these 
variables with lags up to 10 weeks. We chose this cutoff 
for lags because of the relatively short time scale of our 
data (5 years) and because it is a biologically reasonable 
time for weather events to impact mosquito development 
and disease transmission given the development time and 
generation time of mosquitoes as well as the serial interval 
of dengue [23, 37, 38]. We tested for significance of cor-
related lags with a two-tailed t-test to test the null hypoth-
esis that the correlation was equivalent to 0. We report the 
lags with the highest correlation along with p-values at the 
0.10, 0.05, and 0.01 confidence levels.

We also conducted a correlated lag analysis among 
provinces. We calculated correlations between lags in 
residuals of time series of cases in each province. We 
determined the significance of these correlations with a 
two-tailed t-test to test the null hypothesis that the cor-
relation was equivalent to 0. We report the lags with the 
highest correlation along with p-values at the 0.10, 0.05, 
and 0.01 confidence levels. All correlation analyses were 
conducted in R 4.1.0 [39]. Fitting of SARIMA models was 
conducted using the auto.arima() function in the forecast 
package [40, 41]. Cross-correlation functions were cal-
culated with the ccf() function in the R base installation 
[42].

Results
Dengue cases: spatiotemporal analysis
We first calculated descriptive statistics for dengue cases 
in the country each year (total cases, mean cases per 
week, standard deviation of cases per week, minimum 
number of cases per week, maximum number of cases 
per week, and the dengue incidence rate per year). Table 2 
presents these results. In 2015 and 2019 there were major 

outbreaks with dengue incidence rates of 168.69 and 
194.27 cases per 100,000 residents, respectively.

The two largest outbreaks each started during late 
spring (April–May) and continued for approximately 
one year (Fig.  3). The 2015 outbreak peaked in Octo-
ber, while the 2019 outbreak peaked in August. Central 
provinces experienced the highest incidence during the 
2015 outbreaks, while in 2019, provinces in the north 
and south experienced the highest incidence (Fig.  4). 
The increase in incidence in the northern and south-
ern provinces could be related to socioeconomic fac-
tors or differences in climate variables between the 2 
years. Barahona in the southwest, along with Hermanas 
Mirabel, Sánchez Ramirez, and San José de Ocoa in the 
center and Hato Mayor in the east all experienced simi-
larly high incidence in both 2015 and 2019. Puerto Plata 
in the north along with Distrito Nacional in the south-
east and many other coastal provinces experienced sim-
ilarly lower incidence in both outbreaks. Puerto Plata 
and Distrito Nacional are both popular destinations 
for international travel and thus are likely to employ 
more aggressive mosquito control and dengue preven-
tion practices. Table 3 shows incidence calculations for 

Table 2 Descriptive statistics for dengue cases each year, 2015–2020

2015 2016 2017 2018 2019 2020

Total cases 16,836 6559 1335 1538 20,123 3070

Mean (per week) 323.77 126.13 25.67 29.58 386.98 59.04

St. Dev (per week) 40.64 15.62 1.44 2.47 37.49 15.50

Min. (per week) 66 15 5 5 57 0

Max. (per week) 1140 530 57 87 888 417

DIR (per 100,000 people) 168.69 65.10 13.13 14.98 194.27 29.38

10 20 30 40 50

epidemiological week

0

2

4

6

8

10

12

de
ng

ue
 in

ci
de

nc
e 

(p
er

 1
00

,0
0 

pe
op

le
)

2015
2016
2017
2018
2019

Fig. 3 National dengue incidence by week from 2015 to 2019 in the 
Dominican Republic
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Fig. 4 Spatial description of dengue incidence in 2015 (a) and 2019 (b)
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the nine provinces of focus for this study along with the 
national incidence for both 2015 and 2019.

Climate variables and dengue cases
The majority of the Dominican Republic has a tropical 
climate with hot temperatures all year and the warmest 
months being May to October. There is a rainy season 
between late April and October, while the northern coast, 
exposed to the trade winds, is rainy throughout the year. 
On the southern coast, there is a considerable amount of 
precipitation because it is not protected by mountains. 
As a Caribbean country, the rains occur mainly as short 
showers and thunderstorms which are sometimes intense 
and often concentrated in short periods of time. Table 4 
summarizes the climate statistics for the nine provinces 
studied in the two outbreaks. In both years, the values for 
all climate variables did not vary so much.

Although average values and ranges of climate vari-
ables are useful for pointing out variations across years, it 
is important to consider the temporal variation in climate 
variables and how they might relate to dengue outbreaks. 
As an example, we show in Fig.  5 temporal variation in 
climate variables and dengue cases in 2015 and 2019 in 
Distrito Nacional. Behavior across provinces were simi-
lar and are excluded here for brevity. Temperature and 
relative humidity are relatively stable throughout the 
year, although temperatures increase from the begin-
ning of each year until epidemiological weeks 30–35. The 
cumulative precipitation per week is rather variable and 
could potentially have more influence on dengue cases. 
We investigate this relationship, along with relationships 
between weekly variation in other climate variables and 
dengue transmission, in the next section.

Cross‑correlation analysis
Correlations in lags between dengue cases and climate 
variables
Table  5 contains correlations between lags in climate 
variables and dengue cases in the 9 provinces. Although 
we tested 14 variables, we present only 9 here. Addi-
tional file  1: Table  S1 in supporting information shows 
values for the remaining variables we tested. Maximum 
and average weekly relative humidity were the variables 
most often significantly correlated with dengue cases 
at the α = 0.05 or stronger confidence level (6 and 5 of 9 
provinces, respectively), followed by weekly minimum 

temperature (4 of 9 provinces), relative humidity range, 
mean daily temperature, and maximum weekly tempera-
ture (3 of 9 provinces).

In Barahona, La Altagracia, La Romana, Monte Cristi, 
Puerto Plata, and Santo Domingo, lags between dengue 
cases and average relative humidity were significantly 
correlated at the α = 0.05 or stronger confidence level 
with lags of 4–10 weeks. For most provinces, these cor-
relations were negative, suggesting that, for example, 
decreasing average relative humidity may be associ-
ated with increases in dengue cases. Lags of 3–10 weeks 
between dengue cases and maximum relative humidity 
were significantly correlated at the α = 0.05 or stronger 
confidence level in Barahona, La Romana, Monte Cristi, 
Santo Domingo, and Distrito Nacional. For all prov-
inces except Distrito Nacional, these correlations were 
also negative. For lags with the weekly range of relative 
humidity, lags of 5–10 weeks were significantly positively 
correlated at the α = 0.05 or stronger confidence level 
for Barahona, La Romana, and Puerto Plata provinces, 
suggesting higher ranges in weekly relatively humidity 
could be associated with dengue cases. For provinces for 
which we found significant positive correlations between 
dengue cases and relative humidity variables, rates of 
increases in cases lagged behind those of other provinces, 
suggesting that perhaps timing of cases in provinces rela-
tive to one another played a role in these relationships. 
We explore this further later in this section.

In general, correlations between lags in dengue cases 
and temperature variables were significant less often 
than those we found for relative humidity; however, lags 
between cases and minimum weekly temperature were 
significantly correlated at the α = 0.05 or stronger level 
for lags of 1–7  weeks for the provinces of Barahona, 
Monte Cristi, Samaná, and Santo Domingo. In all four 
of these provinces, correlations were positive, suggesting 
that higher minimum weekly temperatures were associ-
ated with more dengue cases. Lags of 2–5 weeks between 
maximum weekly temperature and dengue cases were 
also strongly correlated at the α = 0.05 or stronger level 
for La Romana, Monte Cristi, and Puerto Plata prov-
inces, although correlations in La Romana and Puerto 
Plata were negative whereas the correlation in Monte 
Cristi was positive. For mean daily temperature, lags 
of 1–5  weeks between this variable and dengue cases 
were significantly correlated at the α = 0.05 or stronger 

Table 3 Dengue incidence per 100,000 people by province for the 2015 and 2019 outbreaks

Year Barahona La Altagracia La Romana Monte Cristi Puerto Plata Samaná Santiago Santo Domingo Distrito Nacional Dominican 
Republic

2015 273.9 87.6 30.7 132.1 114.3 131.3 148.5 162.0 197.6 168.7

2019 456.2 206.6 153.0 250.8 104.7 72.2 216.1 210.7 163.9 194.3



Page 8 of 15Robert et al. Tropical Medicine and Health           (2023) 51:32 

Ta
bl

e 
4 

Su
m

m
ar

y 
st

at
is

tic
s 

of
 c

lim
at

e 
va

ria
bl

es

St
at

is
tic

s 
ar

e 
ca

lc
ul

at
ed

 p
er

 w
ee

k.
 A

ve
ra

ge
s 

ac
ro

ss
 th

e 
ye

ar
 a

re
 s

ho
w

n 
ab

ov
e 

ra
ng

es
 (M

in
.–

M
ax

.) 
of

 e
ac

h 
va

ria
bl

e 
in

 p
ar

en
th

es
es

 b
el

ow
. A

ll 
te

m
pe

ra
tu

re
s 

ar
e 

gi
ve

n 
in

 (°
C)

, a
nd

 p
re

ci
pi

ta
tio

n 
is

 g
iv

en
 in

  m
m

3 . R
el

at
iv

e 
hu

m
id

ity
 (R

H
) v

al
ue

s 
ar

e 
m

ea
su

re
d 

in
 p

er
ce

nt
ag

es

20
15

20
19

M
in

. t
em

p
M

ea
n 

te
m

p
M

ax
. t

em
p

To
ta

l p
re

ci
p

M
ea

n 
RH

M
in

. t
em

p
M

ea
n 

te
m

p
M

ax
. t

em
p

To
ta

l p
re

ci
p

M
ea

n 
RH

Ba
ra

ho
na

21
.6

 (1
9–

25
.5

)
27

.6
 (2

4.
5–

30
)

33
.0

 (3
0.

4–
38

)
9.

7 
(0

–7
9.

5)
69

.9
 (6

3.
3–

81
.2

)
21

.7
 (1

8–
25

)
27

.4
 (2

4.
9–

29
.9

)
32

.8
 (3

0.
6–

35
.8

)
15

.0
 (0

–9
9.

6)
72

.5
 (6

4.
2–

83
.1

)

La
 A

lta
gr

ac
ia

22
.0

 (1
7.

1–
26

.2
)

27
.3

 (2
5.

2–
29

.4
)

31
.4

 (2
9.

6–
33

.4
)

18
.2

 (0
–2

72
.6

)
78

.4
 (6

4.
8–

84
.2

)
21

.3
 (1

7–
24

)
26

.8
 (2

4.
9–

28
.9

)
31

.2
 (2

8.
8–

33
)

12
.0

 (0
–6

1.
4)

77
.2

 (7
1.

0–
83

.2
)

La
 R

om
an

a
19

.0
 (1

5.
5–

22
)

26
.3

 (2
4.

0–
28

.6
)

33
.3

 (3
1–

36
)

13
.0

 (0
–1

30
.5

)
76

.2
 (6

2.
3–

84
.2

)
19

.4
 (1

4.
4–

23
.2

)
26

.3
 (2

2.
9–

28
.5

)
33

.0
 (3

0.
5–

35
.8

)
21

.4
 (0

–1
50

.1
)

82
.7

 (7
6.

3–
90

.2
)

M
on

te
 C

ris
ti

21
.7

 (1
8.

5–
24

.9
)

27
.8

 (2
3.

8–
30

.3
)

33
.8

 (3
0.

8–
37

.4
)

10
.3

 (0
–1

65
.5

)
68

.5
 (6

3.
2–

81
.0

)
21

.4
 (2

.2
–2

5)
24

.5
 (2

0.
3–

26
.9

)
27

.3
 (2

3–
35

.9
)

7.
6 

(0
–1

07
.5

)
69

.3
 (6

0.
6–

77
.6

)

Pu
er

to
 P

la
ta

20
.8

 (1
5.

8–
23

.7
)

27
.0

 (2
3.

6–
29

.7
)

33
.5

 (3
0–

37
.4

)
24

.0
 (0

–2
25

.9
)

81
.4

 (6
8.

3–
89

.0
)

20
.9

 (1
5.

6–
23

.6
)

27
.2

 (2
4.

2–
29

.9
)

33
.8

 (3
0.

2–
37

.7
)

17
.6

 (0
–1

49
)

81
.8

 (7
7.

4–
90

.5
)

Sa
m

an
á

22
.7

 (2
9.

5–
35

)
27

.7
 (2

5.
3–

30
.2

)
32

.4
 (2

9.
5–

35
)

39
.4

 (0
–2

01
.9

)
83

.6
 (7

1.
2–

91
.8

)
22

.1
 (1

4–
25

)
27

.6
 (2

4.
7–

29
.8

)
32

.8
 (2

9.
5–

35
)

30
.7

 (0
–1

48
)

83
.2

 (7
7.

0–
89

.4
)

Sa
nt

ia
go

19
.6

 (1
5–

22
.8

)
26

.6
 (2

3.
5–

29
.5

)
33

.3
 (2

9.
7–

37
.7

)
13

.5
 (0

–5
0.

2)
78

.3
 (6

5.
1–

88
.0

)
19

.2
 (1

5–
22

)
26

.7
 (2

3.
4–

29
.3

)
33

.8
 (3

0.
2–

37
.4

)
16

.9
 (0

–1
40

.2
)

79
.8

 (6
9.

7–
88

.8
)

Sa
nt

o 
D

om
in

go
23

.0
 (2

0.
8–

26
)

27
.9

 (2
6.

0–
29

.9
)

32
.9

 (3
1–

37
.2

)
22

.8
6 

(0
–1

26
.6

)
82

.5
 (7

2.
0–

91
.5

)
22

.9
 (2

0.
1–

26
)

28
.3

 (2
6.

1–
30

.4
)

33
.8

 (3
1–

37
)

13
.7

 (0
–8

3.
8)

78
.6

 (7
2.

5–
84

.1
)

D
is

tr
ito

 N
ac

io
na

l
23

.0
 (2

0.
8–

26
)

27
.9

 (2
6.

0–
29

.9
)

32
.9

 (3
1–

37
.2

)
22

.8
6 

(0
–1

26
.6

)
82

.5
 (7

2.
0–

91
.5

)
22

.9
 (2

0.
1–

26
)

28
.3

 (2
6.

1–
30

.4
)

33
.8

 (3
1–

37
)

13
.7

 (0
–8

3.
8)

78
.6

 (7
2.

5–
84

.1
)



Page 9 of 15Robert et al. Tropical Medicine and Health           (2023) 51:32  

confidence level. Notably, lags of 1  week between mean 
daily temperature and dengue cases were significant 
in Santo Domingo and Distrito Nacional; however, the 
direction of these correlations differed. Again, it is pos-
sible that these differences in the directions of relation-
ships are a result of lags between the timing of outbreaks 
in different provinces.

No correlations of lags with total precipitation and 
average precipitation were significant at the α = 0.05 con-
fidence level. This result is surprising because we would 
expect dengue transmission in tropical climates to be 
positively correlated with precipitation given the impor-
tant role of water in the mosquito’s life cycle [43].

The provinces with the most significantly correlated 
lags in climate variables at α = 0.05 or stronger confidence 
level were Santo Domingo (7 variables); Puerto Plata (6); 
Barahona, La Romana, and Distrito Nacional (5); and 
Monte Cristi (4). For all other provinces included in the 
study, only 2 or fewer climate variables were significantly 
correlated.

Correlations in lags between cases in different provinces
Almost all of the largest correlations in lags between 
cases in different provinces were significant (p < 0.05), 
and most were highly significant (p < 0.01). Only three of 
72 tested correlations were not significant at the α = 0.05 
or stronger confidence level: cases in Barahona as a pre-
dictor of cases in Distrito Nacional, La Altagracia as a 

predictor for Santiago, and Santo Domingo as a predictor 
for Santiago. In most cases, correlations between prov-
inces with a lag of τ = 0 were the strongest (20 of 72 or 
27.78%), suggesting that cases were largely synced across 
provinces (Table  6). Correlations with lags of 2  weeks 
(16.67%), 1 week (12.5%), and 4 weeks (11.11%) were also 
among some of the strongest, indicating that cases across 
the country closely followed cases in other parts of the 
country.

Cases in Puerto Plata and Santo Domingo were gen-
erally in sync with cases in other regions, with cases in 
both provinces with a lag of τ = 0 having strong positive 
correlations with cases in four of the eight other prov-
inces. In fact, cases in Puerto Plata had strong positive 
correlations with cases in all other provinces with a lag 
of 0–3 weeks. The only exception is Samaná (τ = − 8). For 
Santo Domingo, cases were positively correlated with 
cases in other provinces with a lag of 0 or 4 weeks, but 
cases were negatively correlated with cases in Barahona 
(τ = −  9) and Distrito Nacional (τ = −  1). It is possible 
that the strong positive correlations with short-term lags 
between cases in Puerto Plata and Santo Domingo are 
due either population size, high rates of tourism, or some 
combination thereof.

Cases in Barahona, La Romana, Samaná, and Santiago 
also were positively correlated with all other provinces 
with lags of 0–10, 0–7, 0–10, and 0–8 weeks, respectively. 
In the remaining provinces, correlations were mostly 

Fig. 5 Climate variables and dengue cases in 2015 (a–c) and 2019 (d–f). Variables included are (a, d) temperature (mean temperature is given by 
the solid curve; °C); (b, e) precipitation  (mm3); and (c, f) relative humidity (%)
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positive but cases in each of these five provinces were 
negatively correlated with cases in one other province. 
These correlations were with cases at lags of 5–9 weeks, 
indicating that perhaps decreases in cases in some prov-
inces preceded increases elsewhere (or vice-versa) by 
several weeks. Moreso than in other provinces, cases in 
Samaná, Monte Cristi, and La Romana were correlated 
with cases in other provinces with lags greater than one 
week, indicating that cases in these provinces may often 
occur 2 or more weeks before cases in other provinces. 
Notably, cases in Distrito Nacional were correlated with 
cases in all other provinces with lags of 4–9 weeks, sug-
gesting that increases in transmission in the capital dis-
trict may precede outbreaks elsewhere in the country.

Discussion
Herein we characterized dengue incidence at the prov-
ince level in the Dominican Republic between 2015 
and 2019, a period in which the country and the Carib-
bean region experienced two important epidemics. We 
focused our study on nine provinces that included all 
major geographic regions of the country that represented 
different climate patterns. In our study, we observed dif-
ferent potential drivers of dengue activity in different 
regions of the country. We anticipate that this study will 
be a foundation upon which early warning systems and 
models aimed at predicting dengue activity may be built.

We noted that both major outbreaks (2015 and 2019) 
occurred after the 30th epidemiological week, which cor-
responds approximately to late July. This, together with 
the fluctuations noted even in the years in which no epi-
demic occurred, indicate a seasonal pattern of dengue 
transmission. When comparing the epidemiology of den-
gue in the Dominican Republic with the epidemiology 
throughout the region of the Americas, a similar behav-
ior was observed for 2015 and 2019, the latter being the 
year with the highest number of cases recorded in the 
history of dengue in the Americas [28, 44]. The reduc-
tion in the number of cases between 2016 and 2018 could 
be explained in part by the vector control actions imple-
mented by the Ministry of Health, the adaptation of the 
pathogen, reduction of susceptible population, or par-
tial immunity to dengue conferred by the wave of Zika 
virus that moved through the region between 2015 and 
2016 [45, 46]. Another possible factor that could have an 
impact on dengue transmission is the El Niño Southern 
Oscillation (ENSO). During 2015 and at the beginning 
of 2019 there were warm periods related to ocean–
atmosphere temperature [47]. These results are in line 
with previous studies that found evidence that ENSO is 
associated with dengue outbreaks [48, 49]. Considering 
the number of dengue cases that occurred in 2015 and 
2019, the ENSO phenomenon is an important factor to 

be considered in any early warning system. Even with the 
short period of time in our analysis (5 years), the major 
outbreaks corresponded to the only years that were clas-
sified as warm periods in relationships to ocean–atmos-
phere features.

We found that the southwestern province of Barahona 
had the largest dengue incidence in both 2015 (273.9 per 
100,000 people) and 2019 (456.2). Furthermore, den-
gue activity in Barahona preceded dengue activity in six 
other provinces by 1–10 weeks, and among all the prov-
inces studied here, cases in Barahona were most often 
negatively correlated at longer time lags (6–9 weeks) with 
cases elsewhere, suggesting that outbreaks beginning in 
Barahona may be starting to die out as outbreaks are still 
growing in other provinces. It is possible that new cases 
are introduced to the Dominican Republic in this region 
through immigration from Haiti or via tourism. It is also 
possible that individuals who have dengue must travel 
to other provinces for medical care given that this prov-
ince has only one public hospital [50]. This could lead to 
movement of cases into other provinces and throughout 
the country. Cases in Distrito Nacional preceded cases in 
all other provinces. Distrito Nacional is the most densely 
populated among the provinces we considered, and as the 
capital district, it is important to the national economy 
and tourism. It is highly connected to other provinces 
in the country through highways which facilitate move-
ment of people and potentially mosquitoes via move-
ment of tires and other containers that serve as breeding 
sites [51–53]. This result is consistent with other studies 
showing the importance of population-dense urban areas 
in regional and national transmission of dengue [54, 55]. 
These initial findings from the present work suggest that 
provinces such as Barahona and Distrito Nacional will be 
important in the development of future predictive mod-
els and early warning systems.

In fact, our analyses of lags in cases between provinces 
could help determine how cases spread spatially in the 
country by identifying “source” provinces where dengue 
cases begin (such as Barahona and Distrito Nacional) and 
“sink” provinces where dengue cases later appear. For 
example, cases in La Romana and Santo Domingo often 
trailed cases in other parts of the country. Both provinces 
are home to several popular tourist attractions and may 
benefit from increased surveillance and vector control 
[56]. It is possible that as cases are reported elsewhere in 
the country, control efforts delay significant amounts of 
transmission in these provinces. Despite these lags found, 
most of the lags between provinces were zero, indicating 
that outbreaks occurred throughout most of the region at 
about the same time. This could be explained by human 
movement inside the country. A similar study in the 
country with Zika virus also suggested that the human 
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mobility and the infrastructure level of each region could 
influence the transmission of diseases that had Aedes 
aegypti as a vector [57].

We analyzed climate variables that could contribute to 
the dengue transmission cycle by their impacts on the 
Ae. aegypti life cycle. When all five years of dengue case 
and climate data are considered, lags between relative 
humidity variables and dengue cases were most highly 
correlated, indicating relative humidity as a good predic-
tor of dengue transmission throughout the region. This is 
consistent with previous studies showing strong correla-
tions between dengue cases and average relative humid-
ity, whether those correlations are positive [58, 59] or 
negative [60]. Our results showing different directional 
relationships between dengue and relative humidity 
(i.e., positive correlations for some provinces and nega-
tive correlations for others) emphasize the importance of 
considering effects of local climate variables on dengue 
cases and highlight a need for more thorough data collec-
tion and analyses of these relationships.

Lags with temperature variables, too, were significantly 
correlated with cases in many provinces. This result is sup-
ported by work showing that temperature influences den-
gue transmission through its impacts on both the vector 
life cycle and the virus [15, 19, 61–63]. Surprisingly, lags 
between precipitation and dengue cases were not found 
to be significantly correlated with cases in any of the prov-
inces. In studies of other tropical regions, precipitation 
and humidity are often found to be positively correlated 
with arbovirus activity [29, 58, 59]. It is possible that this is 
because the Dominican Republic’s unique topography inter-
feres with weather patterns and results in having rainy sea-
sons at different times of the year in different regions [29]. 
The landscape of the Dominican Republic is composed of 
chains and valleys with active faults which decreases pre-
cipitation from northeast to southwest in winter and spring 
and increases aridity in western areas where fewer moun-
tain chains are observed. The mountain chains serve as a 
barrier to trade winds, affecting the humidity of such areas. 
Additionally, during short periods of time in April and in 
November, there is a subtropical atmosphere which is influ-
enced by anomalies in sea surface temperatures [29]. While 
cases could be impacted locally by changes in precipitation, 
this may not correspond to times at which dengue transmis-
sion is occurring elsewhere, which may lead to impacts on 
correlation. These results are in line with the ones achieved 
in [64], showing that temperature and humidity have 
impacts on the transmission chain.

Conclusions
The short period of data included in this study is insuf-
ficient for making strong characterizations of relation-
ships. However, in this work we developed a better 

understanding of which variables have been most strongly 
associated with dengue cases in this time frame, which 
includes two important outbreaks. Both outbreaks 
occurred in the middle of the year, which indicate a need 
for more heightened vigilance during this period of the 
year. Additionally, humidity and temperature are the cli-
mate variables with the highest correlations with the num-
ber of cases. These findings will help inform future work 
for building predictive models that incorporate climate 
and spatiotemporal data to characterize province risk and 
refine public health responses. This initial analysis may 
also provide the foundation for models based on ARIMA, 
SARIMA, SARIMAX, or other frameworks for predictive 
models [65–67]. A reliable warning system built on such 
models and adapted to the intrinsic characteristics of each 
province (namely climate, demographics, and landforms) 
could help in the monitoring both the vector and arbovi-
rus transmission [68]. This in turn could lead to a faster 
intervention of health and entomological authorities, thus 
decreasing dengue incidence.

This study contributes an important analysis of recent 
dengue transmission on which more complex spatiotem-
poral analyses can be conducted. For instance, Distrito 
Nacional has the most correlations in dengue cases with 
lags greater than 0  weeks, and cases in Barahona with 
longer time lags are highly correlated with other regions. 
It is possible these areas could provide early warning of 
nationwide outbreaks. The general characterizations of 
climate and dengue activity along with the correlated lags 
analysis across the nine provinces included here provide 
a foundation upon which future studies may build to 
investigate more intricate relationships between dengue 
and climate, human movement, and human activity.
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